Artículo
Hypercyclic homogeneous polynomials on H(C)
Fecha de publicación:
02/2018
Editorial:
Academic Press Inc Elsevier Science
Revista:
Journal Of Approximation Theory
ISSN:
0021-9045
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
It is known that homogeneous polynomials on Banach spaces cannot be hypercyclic, but there are examples of hypercyclic homogeneous polynomials on some non-normable Fréchet spaces. We show the existence of hypercyclic polynomials on H(C), by exhibiting a concrete polynomial which is also the first example of a frequently hypercyclic homogeneous polynomial on any F-space. We prove that the homogeneous polynomial on H(C) defined as the product of a translation operator and the evaluation at 0 is mixing, frequently hypercyclic and chaotic. We prove, in contrast, that some natural related polynomials fail to be hypercyclic.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIFASIS)
Articulos de CENTRO INT.FRANCO ARG.D/CS D/L/INF.Y SISTEM.
Articulos de CENTRO INT.FRANCO ARG.D/CS D/L/INF.Y SISTEM.
Citación
Cardeccia, Rodrigo Alejandro; Muro, Luis Santiago Miguel; Hypercyclic homogeneous polynomials on H(C); Academic Press Inc Elsevier Science; Journal Of Approximation Theory; 226; 2-2018; 60-72
Compartir
Altmétricas