Mostrar el registro sencillo del ítem
dc.contributor.author
Oliynyk, Andriy
dc.contributor.author
Bonifazzi, Claudio
dc.contributor.author
Montani, Fernando Fabián
dc.contributor.author
Fadiga, Luciano
dc.date.available
2020-01-07T18:28:39Z
dc.date.issued
2012-08
dc.identifier.citation
Oliynyk, Andriy; Bonifazzi, Claudio; Montani, Fernando Fabián; Fadiga, Luciano; Automatic online spike sorting with singular value decomposition and fuzzy C-mean clustering; BioMed Central; Bmc Neuroscience; 13; 1; 8-2012; 96-114
dc.identifier.issn
1471-2202
dc.identifier.uri
http://hdl.handle.net/11336/93845
dc.description.abstract
Background: Understanding how neurons contribute to perception, motor functions and cognition requires the reliable detection of spiking activity of individual neurons during a number of different experimental conditions. An important problem in computational neuroscience is thus to develop algorithms to automatically detect and sort the spiking activity of individual neurons from extracellular recordings. While many algorithms for spike sorting exist, the problem of accurate and fast online sorting still remains a challenging issue.Results: Here we present a novel software tool, called FSPS (Fuzzy SPike Sorting), which is designed to optimize: (i) fast and accurate detection, (ii) offline sorting and (iii) online classification of neuronal spikes with very limited or null human intervention. The method is based on a combination of Singular Value Decomposition for fast and highly accurate pre-processing of spike shapes, unsupervised Fuzzy C-mean, high-resolution alignment of extracted spike waveforms, optimal selection of the number of features to retain, automatic identification the number of clusters, and quantitative quality assessment of resulting clusters independent on their size. After being trained on a short testing data stream, the method can reliably perform supervised online classification and monitoring of single neuron activity. The generalized procedure has been implemented in our FSPS spike sorting software (available free for non-commercial academic applications at the address: http://www.spikesorting.com) using LabVIEW (National Instruments, USA). We evaluated the performance of our algorithm both on benchmark simulated datasets with different levels of background noise and on real extracellular recordings from premotor cortex of Macaque monkeys. The results of these tests showed an excellent accuracy in discriminating low-amplitude and overlapping spikes under strong background noise. The performance of our method is competitive with respect to other robust spike sorting algorithms.Conclusions: This new software provides neuroscience laboratories with a new tool for fast and robust online classification of single neuron activity. This feature could become crucial in situations when online spike detection from multiple electrodes is paramount, such as in human clinical recordings or in brain-computer interfaces.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
BioMed Central
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
Non-Stationary System with Nontrivial Dynamics
dc.subject
Neural Code
dc.subject
Singular Value Decomposition (Svd)
dc.subject
Automatic Online Spike Sorting And Fuzzy C-Mean Clustering
dc.subject
Left Singular Vector
dc.subject
Spike Sorting
dc.subject
Spike Shape
dc.subject
Spike Waveform
dc.subject
Online Classification
dc.subject.classification
Otras Ciencias Naturales y Exactas
dc.subject.classification
Otras Ciencias Naturales y Exactas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Automatic online spike sorting with singular value decomposition and fuzzy C-mean clustering
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-04-26T18:18:42Z
dc.journal.volume
13
dc.journal.number
1
dc.journal.pagination
96-114
dc.journal.pais
Reino Unido
dc.journal.ciudad
Londres
dc.description.fil
Fil: Andriy Oliynyk. Università di Ferrara; Italia
dc.description.fil
Fil: Claudio Bonifazzi. Università di Ferrara; Italia
dc.description.fil
Fil: Montani, Fernando Fabián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina
dc.description.fil
Fil: Luciano Fadiga. Università di Ferrara; Italia
dc.journal.title
Bmc Neuroscience
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://bmcneurosci.biomedcentral.com/articles/10.1186/1471-2202-13-96
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1186/1471-2202-13-96
Archivos asociados