Mostrar el registro sencillo del ítem

dc.contributor.author
Oliynyk, Andriy  
dc.contributor.author
Bonifazzi, Claudio  
dc.contributor.author
Montani, Fernando Fabián  
dc.contributor.author
Fadiga, Luciano  
dc.date.available
2020-01-07T18:28:39Z  
dc.date.issued
2012-08  
dc.identifier.citation
Oliynyk, Andriy; Bonifazzi, Claudio; Montani, Fernando Fabián; Fadiga, Luciano; Automatic online spike sorting with singular value decomposition and fuzzy C-mean clustering; BioMed Central; Bmc Neuroscience; 13; 1; 8-2012; 96-114  
dc.identifier.issn
1471-2202  
dc.identifier.uri
http://hdl.handle.net/11336/93845  
dc.description.abstract
Background: Understanding how neurons contribute to perception, motor functions and cognition requires the reliable detection of spiking activity of individual neurons during a number of different experimental conditions. An important problem in computational neuroscience is thus to develop algorithms to automatically detect and sort the spiking activity of individual neurons from extracellular recordings. While many algorithms for spike sorting exist, the problem of accurate and fast online sorting still remains a challenging issue.Results: Here we present a novel software tool, called FSPS (Fuzzy SPike Sorting), which is designed to optimize: (i) fast and accurate detection, (ii) offline sorting and (iii) online classification of neuronal spikes with very limited or null human intervention. The method is based on a combination of Singular Value Decomposition for fast and highly accurate pre-processing of spike shapes, unsupervised Fuzzy C-mean, high-resolution alignment of extracted spike waveforms, optimal selection of the number of features to retain, automatic identification the number of clusters, and quantitative quality assessment of resulting clusters independent on their size. After being trained on a short testing data stream, the method can reliably perform supervised online classification and monitoring of single neuron activity. The generalized procedure has been implemented in our FSPS spike sorting software (available free for non-commercial academic applications at the address: http://www.spikesorting.com) using LabVIEW (National Instruments, USA). We evaluated the performance of our algorithm both on benchmark simulated datasets with different levels of background noise and on real extracellular recordings from premotor cortex of Macaque monkeys. The results of these tests showed an excellent accuracy in discriminating low-amplitude and overlapping spikes under strong background noise. The performance of our method is competitive with respect to other robust spike sorting algorithms.Conclusions: This new software provides neuroscience laboratories with a new tool for fast and robust online classification of single neuron activity. This feature could become crucial in situations when online spike detection from multiple electrodes is paramount, such as in human clinical recordings or in brain-computer interfaces.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
BioMed Central  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
Non-Stationary System with Nontrivial Dynamics  
dc.subject
Neural Code  
dc.subject
Singular Value Decomposition (Svd)  
dc.subject
Automatic Online Spike Sorting And Fuzzy C-Mean Clustering  
dc.subject
Left Singular Vector  
dc.subject
Spike Sorting  
dc.subject
Spike Shape  
dc.subject
Spike Waveform  
dc.subject
Online Classification  
dc.subject.classification
Otras Ciencias Naturales y Exactas  
dc.subject.classification
Otras Ciencias Naturales y Exactas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Automatic online spike sorting with singular value decomposition and fuzzy C-mean clustering  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-04-26T18:18:42Z  
dc.journal.volume
13  
dc.journal.number
1  
dc.journal.pagination
96-114  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Andriy Oliynyk. Università di Ferrara; Italia  
dc.description.fil
Fil: Claudio Bonifazzi. Università di Ferrara; Italia  
dc.description.fil
Fil: Montani, Fernando Fabián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina  
dc.description.fil
Fil: Luciano Fadiga. Università di Ferrara; Italia  
dc.journal.title
Bmc Neuroscience  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://bmcneurosci.biomedcentral.com/articles/10.1186/1471-2202-13-96  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1186/1471-2202-13-96