Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Automatic online spike sorting with singular value decomposition and fuzzy C-mean clustering

Oliynyk, Andriy; Bonifazzi, Claudio; Montani, Fernando FabiánIcon ; Fadiga, Luciano
Fecha de publicación: 08/2012
Editorial: BioMed Central
Revista: Bmc Neuroscience
ISSN: 1471-2202
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Naturales y Exactas

Resumen

Background: Understanding how neurons contribute to perception, motor functions and cognition requires the reliable detection of spiking activity of individual neurons during a number of different experimental conditions. An important problem in computational neuroscience is thus to develop algorithms to automatically detect and sort the spiking activity of individual neurons from extracellular recordings. While many algorithms for spike sorting exist, the problem of accurate and fast online sorting still remains a challenging issue.Results: Here we present a novel software tool, called FSPS (Fuzzy SPike Sorting), which is designed to optimize: (i) fast and accurate detection, (ii) offline sorting and (iii) online classification of neuronal spikes with very limited or null human intervention. The method is based on a combination of Singular Value Decomposition for fast and highly accurate pre-processing of spike shapes, unsupervised Fuzzy C-mean, high-resolution alignment of extracted spike waveforms, optimal selection of the number of features to retain, automatic identification the number of clusters, and quantitative quality assessment of resulting clusters independent on their size. After being trained on a short testing data stream, the method can reliably perform supervised online classification and monitoring of single neuron activity. The generalized procedure has been implemented in our FSPS spike sorting software (available free for non-commercial academic applications at the address: http://www.spikesorting.com) using LabVIEW (National Instruments, USA). We evaluated the performance of our algorithm both on benchmark simulated datasets with different levels of background noise and on real extracellular recordings from premotor cortex of Macaque monkeys. The results of these tests showed an excellent accuracy in discriminating low-amplitude and overlapping spikes under strong background noise. The performance of our method is competitive with respect to other robust spike sorting algorithms.Conclusions: This new software provides neuroscience laboratories with a new tool for fast and robust online classification of single neuron activity. This feature could become crucial in situations when online spike detection from multiple electrodes is paramount, such as in human clinical recordings or in brain-computer interfaces.
Palabras clave: Non-Stationary System with Nontrivial Dynamics , Neural Code , Singular Value Decomposition (Svd) , Automatic Online Spike Sorting And Fuzzy C-Mean Clustering , Left Singular Vector , Spike Sorting , Spike Shape , Spike Waveform , Online Classification
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.461Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/93845
URL: https://bmcneurosci.biomedcentral.com/articles/10.1186/1471-2202-13-96
DOI: https://doi.org/10.1186/1471-2202-13-96
Colecciones
Articulos(IFLP)
Articulos de INST.DE FISICA LA PLATA
Articulos(IFLYSIB)
Articulos de INST.FISICA DE LIQUIDOS Y SIST.BIOLOGICOS (I)
Citación
Oliynyk, Andriy; Bonifazzi, Claudio; Montani, Fernando Fabián; Fadiga, Luciano; Automatic online spike sorting with singular value decomposition and fuzzy C-mean clustering; BioMed Central; Bmc Neuroscience; 13; 1; 8-2012; 96-114
Compartir
Altmétricas
 

Items relacionados

Mostrando titulos relacionados por título, autor y tema.

  • Artículo Noise-induced interspike interval correlations and spike train regularization in spike-triggered adapting neurons
    Urdapilleta, Eugenio (Europhysics Letters, 2016-09)
  • Artículo More fertile florets and grains per spike can be achieved at higher temperature in wheat lines with high spike biomass and sugar content at booting
    Dreccer, M. Fernanda; Wockner, Kimberley B.; Palta, Jairo A.; Mcintyre, C. Lynne; Borgognone, M. Gabriela; Bourgault, Maryse; Reynolds, Matthew; Miralles, Daniel Julio (Csiro Publishing, 2014-01)
  • Artículo Wheat spike fertility: Inheritance and relationship with spike yield components in early generations
    Martino, Diana Laura ; Abbate, Pablo Eduardo; Cendoya, María Gabriela; Gutheim, Florencia; Mirabella, Nadia Estefania; Pontaroli, Ana (Wiley Blackwell Publishing, Inc, 2015-06)
Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES