Mostrar el registro sencillo del ítem

dc.contributor.author
Pineda Rojas, Andrea Laura  
dc.contributor.author
Leloup, Julie A.  
dc.contributor.author
Kropff, Emilio  
dc.date.available
2020-01-06T19:58:11Z  
dc.date.issued
2019-06  
dc.identifier.citation
Pineda Rojas, Andrea Laura; Leloup, Julie A.; Kropff, Emilio; Spatial patterns of conditions leading to peak O3 concentrations revealed by clustering analysis of modeled data; Springer; Air Quality, Atmosphere and Health; 12; 6; 6-2019; 743-754  
dc.identifier.issn
1873-9318  
dc.identifier.uri
http://hdl.handle.net/11336/93699  
dc.description.abstract
Air quality models are currently the best available tool to estimate ozone (O3) concentrations in the Metropolitan Area of Buenos Aires (MABA). While the DAUMOD-GRS has been satisfactorily evaluated against observations in the urban area, a Monte Carlo (MC) analysis showed that it is the region around the MABA, where the lack of observations impedes model testing, that concentrates not only the greatest estimated O3 peak levels but also the largest model uncertainty. In this work, we apply clustering analysis to these MC outcomes in order to study the spatial patterns of conditions leading to peak ozone hourly concentrations. Results show that families of conditions distribute, as emissions, radially around the city. A cluster exhibiting an O3 morning peak dominates in low-emission areas, a behavior that can be explained both from theory and from the few monitoring campaigns carried out in the city. Its distinct dynamics compared with the typical O3 diurnal profile occurring in the urban area suggests the need of new ozone measurements in the surroundings of the MABA which could contribute to improve our understanding of O3 formation drivers in this region. The results illustrate the potential of applying clustering analysis on large ensembles of modeled data to better understand the variability in model solutions.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
AIR QUALITY MODELING  
dc.subject
BUENOS AIRES  
dc.subject
CLUSTERING ANALYSIS  
dc.subject
MONTE CARLO SIMULATIONS  
dc.subject
OZONE  
dc.subject.classification
Meteorología y Ciencias Atmosféricas  
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Spatial patterns of conditions leading to peak O3 concentrations revealed by clustering analysis of modeled data  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-12-11T20:18:25Z  
dc.identifier.eissn
1873-9326  
dc.journal.volume
12  
dc.journal.number
6  
dc.journal.pagination
743-754  
dc.journal.pais
Países Bajos  
dc.description.fil
Fil: Pineda Rojas, Andrea Laura. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Leloup, Julie A.. Centre National de la Recherche Scientifique. Institut de Recherche pour le Développement; Francia  
dc.description.fil
Fil: Kropff, Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina  
dc.journal.title
Air Quality, Atmosphere and Health  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s11869-019-00694-9  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11869-019-00694-9