Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Spatial patterns of conditions leading to peak O3 concentrations revealed by clustering analysis of modeled data

Pineda Rojas, Andrea LauraIcon ; Leloup, Julie A.; Kropff, EmilioIcon
Fecha de publicación: 06/2019
Editorial: Springer
Revista: Air Quality, Atmosphere and Health
ISSN: 1873-9318
e-ISSN: 1873-9326
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Meteorología y Ciencias Atmosféricas

Resumen

Air quality models are currently the best available tool to estimate ozone (O3) concentrations in the Metropolitan Area of Buenos Aires (MABA). While the DAUMOD-GRS has been satisfactorily evaluated against observations in the urban area, a Monte Carlo (MC) analysis showed that it is the region around the MABA, where the lack of observations impedes model testing, that concentrates not only the greatest estimated O3 peak levels but also the largest model uncertainty. In this work, we apply clustering analysis to these MC outcomes in order to study the spatial patterns of conditions leading to peak ozone hourly concentrations. Results show that families of conditions distribute, as emissions, radially around the city. A cluster exhibiting an O3 morning peak dominates in low-emission areas, a behavior that can be explained both from theory and from the few monitoring campaigns carried out in the city. Its distinct dynamics compared with the typical O3 diurnal profile occurring in the urban area suggests the need of new ozone measurements in the surroundings of the MABA which could contribute to improve our understanding of O3 formation drivers in this region. The results illustrate the potential of applying clustering analysis on large ensembles of modeled data to better understand the variability in model solutions.
Palabras clave: AIR QUALITY MODELING , BUENOS AIRES , CLUSTERING ANALYSIS , MONTE CARLO SIMULATIONS , OZONE
Ver el registro completo
 
Archivos asociados
Tamaño: 1.020Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/93699
URL: http://link.springer.com/10.1007/s11869-019-00694-9
DOI: http://dx.doi.org/10.1007/s11869-019-00694-9
Colecciones
Articulos(CIMA)
Articulos de CENTRO DE INVESTIGACIONES DEL MAR Y LA ATMOSFERA
Articulos(IIBBA)
Articulos de INST.DE INVEST.BIOQUIMICAS DE BS.AS(I)
Citación
Pineda Rojas, Andrea Laura; Leloup, Julie A.; Kropff, Emilio; Spatial patterns of conditions leading to peak O3 concentrations revealed by clustering analysis of modeled data; Springer; Air Quality, Atmosphere and Health; 12; 6; 6-2019; 743-754
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES