Mostrar el registro sencillo del ítem

dc.contributor.author
Rossit, Daniel Alejandro  
dc.contributor.author
Vásquez, Óscar C.  
dc.contributor.author
Tohmé, Fernando Abel  
dc.contributor.author
Frutos, Mariano  
dc.contributor.author
Safe, Martin Dario  
dc.date.available
2019-12-30T17:34:04Z  
dc.date.issued
2021-03-30  
dc.identifier.citation
Rossit, Daniel Alejandro; Vásquez, Óscar C.; Tohmé, Fernando Abel; Frutos, Mariano; Safe, Martin Dario; A combinatorial analysis of the permutation and non-permutation flow shop scheduling problems; Elsevier Science; European Journal of Operational Research; 289; 3; 30-3-2021; 841-854  
dc.identifier.issn
0377-2217  
dc.identifier.uri
http://hdl.handle.net/11336/93276  
dc.description.abstract
In this paper we introduce a novel approach to the combinatorial analysis of flow shop scheduling problems for the case of two jobs, assuming that processing times are unknown. The goal is to determine the dominance properties between permutation flow shop (PFS) and non-permutation flow shop (NPFS) schedules. In order to address this issue we develop a graph-theoretical approach to describe the sets of operations that define the makespan of feasible PFS and NPFS schedules (critical paths). The cardinality of these sets is related to the number of switching machines at which the sequence of the previous operations of the two jobs becomes reversed. This, in turn, allows us to uncover structural and dominance properties between the PFS and NPFS versions of the scheduling problem. We also study the case in which the ratio between the shortest and longest processing times, denoted ρ, is the only information known about those processing times. A combinatorial argument based on ρ leads to the identification of the NPFS schedules that are dominated by PFS ones, restricting the space of feasible solutions to the NPFS problem. We also extend our analysis to the comparison of NPFS schedules (with different number of switching machines). Again, based on the value of ρ, we are able to identify NPFS schedules dominated by other NPFS schedules.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
CRITICAL PATH  
dc.subject
MAKESPAN  
dc.subject
NON-PERMUTATION FLOW SHOP SCHEDULING PROBLEM  
dc.subject
STRUCTURAL AND DOMINANCE PROPERTIES  
dc.subject
UNKNOWN PROCESSING TIMES  
dc.subject.classification
Otras Ingenierías y Tecnologías  
dc.subject.classification
Otras Ingenierías y Tecnologías  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
A combinatorial analysis of the permutation and non-permutation flow shop scheduling problems  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-12-11T20:18:38Z  
dc.journal.volume
289  
dc.journal.number
3  
dc.journal.pagination
841-854  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Rossit, Daniel Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina  
dc.description.fil
Fil: Vásquez, Óscar C.. Universidad de Santiago de Chile; Chile  
dc.description.fil
Fil: Tohmé, Fernando Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina  
dc.description.fil
Fil: Frutos, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; Argentina  
dc.description.fil
Fil: Safe, Martin Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina  
dc.journal.title
European Journal of Operational Research  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0377221719306344  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.ejor.2019.07.055