Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A combinatorial analysis of the permutation and non-permutation flow shop scheduling problems

Rossit, Daniel AlejandroIcon ; Vásquez, Óscar C.; Tohmé, Fernando AbelIcon ; Frutos, MarianoIcon ; Safe, Martin DarioIcon
Fecha de publicación: 30/03/2021
Editorial: Elsevier Science
Revista: European Journal of Operational Research
ISSN: 0377-2217
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ingenierías y Tecnologías

Resumen

In this paper we introduce a novel approach to the combinatorial analysis of flow shop scheduling problems for the case of two jobs, assuming that processing times are unknown. The goal is to determine the dominance properties between permutation flow shop (PFS) and non-permutation flow shop (NPFS) schedules. In order to address this issue we develop a graph-theoretical approach to describe the sets of operations that define the makespan of feasible PFS and NPFS schedules (critical paths). The cardinality of these sets is related to the number of switching machines at which the sequence of the previous operations of the two jobs becomes reversed. This, in turn, allows us to uncover structural and dominance properties between the PFS and NPFS versions of the scheduling problem. We also study the case in which the ratio between the shortest and longest processing times, denoted ρ, is the only information known about those processing times. A combinatorial argument based on ρ leads to the identification of the NPFS schedules that are dominated by PFS ones, restricting the space of feasible solutions to the NPFS problem. We also extend our analysis to the comparison of NPFS schedules (with different number of switching machines). Again, based on the value of ρ, we are able to identify NPFS schedules dominated by other NPFS schedules.
Palabras clave: CRITICAL PATH , MAKESPAN , NON-PERMUTATION FLOW SHOP SCHEDULING PROBLEM , STRUCTURAL AND DOMINANCE PROPERTIES , UNKNOWN PROCESSING TIMES
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.539Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/93276
URL: https://www.sciencedirect.com/science/article/abs/pii/S0377221719306344
DOI: http://dx.doi.org/10.1016/j.ejor.2019.07.055
Colecciones
Articulos(IIESS)
Articulos de INST. DE INVESTIGACIONES ECONOMICAS Y SOCIALES DEL SUR
Articulos(INMABB)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Citación
Rossit, Daniel Alejandro; Vásquez, Óscar C.; Tohmé, Fernando Abel; Frutos, Mariano; Safe, Martin Dario; A combinatorial analysis of the permutation and non-permutation flow shop scheduling problems; Elsevier Science; European Journal of Operational Research; 289; 3; 30-3-2021; 841-854
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES