Mostrar el registro sencillo del ítem

dc.contributor.author
Andruchow, Esteban  
dc.contributor.author
Larotonda, Gabriel Andrés  
dc.date.available
2019-12-27T04:15:00Z  
dc.date.issued
2008-10  
dc.identifier.citation
Andruchow, Esteban; Larotonda, Gabriel Andrés; Weak Riemannian manifolds from finite index subfactors; Springer; Annals Of Global Analysis And Geometry; 34; 3; 10-2008; 213-232  
dc.identifier.issn
0232-704X  
dc.identifier.uri
http://hdl.handle.net/11336/93037  
dc.description.abstract
Let N ⊂ M be a finite Jones' index inclusion of II1 factors and denote by UN ⊂ UM their unitary groups. In this article, we study the homogeneous space UM/UN, which is a (infinite dimensional) differentiable manifold, diffeomorphic to the orbit O(p) = {u p u* : u ∈ UM} of the Jones projection p of the inclusion. We endow O(p) with a Riemannian metric, by means of the trace on each tangent space. These are pre-Hilbert spaces (the tangent spaces are not complete); therefore, O(p) is a weak Riemannian manifold. We show that O(p) enjoys certain properties similar to classic Hilbert-Riemann manifolds. Among them are metric completeness of the geodesic distance, uniqueness of geodesics of the Levi-Civita connection as minimal curves, and partial results on the existence of minimal geodesics. For instance, around each point p1 of O(p), there is a ball {q ∈ O(p) : ||q - p1|| < r} (of uniform radius r) of the usual norm of M, such that any point p2 in the ball is joined to p1 by a unique geodesic, which is shorter than any other piecewise smooth curve lying inside this ball. We also give an intrinsic (algebraic) characterization of the directions of degeneracy of the submanifold inclusion O(p) ⊂ P(M1), where the last set denotes the Grassmann manifold of the von Neumann algebra generated by M and p.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
FINITE INDEX INCLUSION  
dc.subject
HOMOGENEOUS SPACE  
dc.subject
JONES' PROJECTION  
dc.subject
LEVI-CIVITA CONNECTION  
dc.subject
RIEMANNIAN SUBMANIFOLD  
dc.subject
SHORT GEODESIC  
dc.subject
TOTALLY GEODESIC SUBMANIFOLD  
dc.subject
TRACE QUADRATIC NORM  
dc.subject
VON NEUMANN II1 SUBFACTOR  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Weak Riemannian manifolds from finite index subfactors  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-11-11T15:23:27Z  
dc.identifier.eissn
1572-9060  
dc.journal.volume
34  
dc.journal.number
3  
dc.journal.pagination
213-232  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlín  
dc.description.fil
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina  
dc.description.fil
Fil: Larotonda, Gabriel Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina  
dc.journal.title
Annals Of Global Analysis And Geometry  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10455-008-9104-1  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10455-008-9104-1  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/0808.2527