Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Weak Riemannian manifolds from finite index subfactors

Andruchow, EstebanIcon ; Larotonda, Gabriel AndrésIcon
Fecha de publicación: 10/2008
Editorial: Springer
Revista: Annals Of Global Analysis And Geometry
ISSN: 0232-704X
e-ISSN: 1572-9060
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Pura

Resumen

Let N ⊂ M be a finite Jones' index inclusion of II1 factors and denote by UN ⊂ UM their unitary groups. In this article, we study the homogeneous space UM/UN, which is a (infinite dimensional) differentiable manifold, diffeomorphic to the orbit O(p) = {u p u* : u ∈ UM} of the Jones projection p of the inclusion. We endow O(p) with a Riemannian metric, by means of the trace on each tangent space. These are pre-Hilbert spaces (the tangent spaces are not complete); therefore, O(p) is a weak Riemannian manifold. We show that O(p) enjoys certain properties similar to classic Hilbert-Riemann manifolds. Among them are metric completeness of the geodesic distance, uniqueness of geodesics of the Levi-Civita connection as minimal curves, and partial results on the existence of minimal geodesics. For instance, around each point p1 of O(p), there is a ball {q ∈ O(p) : ||q - p1|| < r} (of uniform radius r) of the usual norm of M, such that any point p2 in the ball is joined to p1 by a unique geodesic, which is shorter than any other piecewise smooth curve lying inside this ball. We also give an intrinsic (algebraic) characterization of the directions of degeneracy of the submanifold inclusion O(p) ⊂ P(M1), where the last set denotes the Grassmann manifold of the von Neumann algebra generated by M and p.
Palabras clave: FINITE INDEX INCLUSION , HOMOGENEOUS SPACE , JONES' PROJECTION , LEVI-CIVITA CONNECTION , RIEMANNIAN SUBMANIFOLD , SHORT GEODESIC , TOTALLY GEODESIC SUBMANIFOLD , TRACE QUADRATIC NORM , VON NEUMANN II1 SUBFACTOR
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 245.6Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/93037
URL: https://link.springer.com/article/10.1007/s10455-008-9104-1
DOI: http://dx.doi.org/10.1007/s10455-008-9104-1
URL: https://arxiv.org/abs/0808.2527
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Andruchow, Esteban; Larotonda, Gabriel Andrés; Weak Riemannian manifolds from finite index subfactors; Springer; Annals Of Global Analysis And Geometry; 34; 3; 10-2008; 213-232
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES