Mostrar el registro sencillo del ítem
dc.contributor.author
Andruchow, Esteban
dc.contributor.author
Larotonda, Gabriel Andrés
dc.date.available
2019-12-27T03:58:08Z
dc.date.issued
2009-03
dc.identifier.citation
Andruchow, Esteban; Larotonda, Gabriel Andrés; Lagrangian Grassmannian in infinite dimension; Elsevier Science; Journal Of Geometry And Physics; 59; 3; 3-2009; 306-320
dc.identifier.issn
0393-0440
dc.identifier.uri
http://hdl.handle.net/11336/93033
dc.description.abstract
Given a complex structure J on a real (finite or infinite dimensional) Hilbert space H, we study the geometry of the Lagrangian Grassmannian Λ (H) of H, i.e. the set of closed linear subspaces L ⊂ H such that J (L) = L⊥. The complex unitary group U (HJ), consisting of the elements of the orthogonal group of H which are complex linear for the given complex structure, acts transitively on Λ (H) and induces a natural linear connection in Λ (H). It is shown that any pair of Lagrangian subspaces can be joined by a geodesic of this connection. A Finsler metric can also be introduced, if one regards subspaces L as projections pL (=the orthogonal projection onto L) or symmetries ε{lunate}L = 2 pL - I, namely measuring tangent vectors with the operator norm. We show that for this metric the Hopf-Rinow theorem is valid in Λ (H): a geodesic joining a pair of Lagrangian subspaces can be chosen to be of minimal length. A similar result holds for the unitary orbit of a Lagrangian subspace under the action of the k-Schatten unitary group (2 ≤ k ≤ ∞), with the Finsler metric given by the k-norm.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
ANALYSIS ON MANIFOLDS
dc.subject
COMPLEX STRUCTURE
dc.subject
GLOBAL ANALYSIS
dc.subject
LAGRANGIAN SUBSPACE
dc.subject
REAL AND COMPLEX DIFFERENTIAL GEOMETRY
dc.subject
SHORT GEODESIC
dc.subject
SYMPLECTIC GEOMETRY
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Lagrangian Grassmannian in infinite dimension
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-11-11T15:23:02Z
dc.journal.volume
59
dc.journal.number
3
dc.journal.pagination
306-320
dc.journal.pais
Países Bajos
dc.journal.ciudad
Ámsterdam
dc.description.fil
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
dc.description.fil
Fil: Larotonda, Gabriel Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
dc.journal.title
Journal Of Geometry And Physics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S039304400800185X
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.geomphys.2008.11.004
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/0808.2270
Archivos asociados