Mostrar el registro sencillo del ítem

dc.contributor.author
Andruchow, Esteban  
dc.contributor.author
Larotonda, Gabriel Andrés  
dc.date.available
2019-12-27T03:58:08Z  
dc.date.issued
2009-03  
dc.identifier.citation
Andruchow, Esteban; Larotonda, Gabriel Andrés; Lagrangian Grassmannian in infinite dimension; Elsevier Science; Journal Of Geometry And Physics; 59; 3; 3-2009; 306-320  
dc.identifier.issn
0393-0440  
dc.identifier.uri
http://hdl.handle.net/11336/93033  
dc.description.abstract
Given a complex structure J on a real (finite or infinite dimensional) Hilbert space H, we study the geometry of the Lagrangian Grassmannian Λ (H) of H, i.e. the set of closed linear subspaces L ⊂ H such that J (L) = L⊥. The complex unitary group U (HJ), consisting of the elements of the orthogonal group of H which are complex linear for the given complex structure, acts transitively on Λ (H) and induces a natural linear connection in Λ (H). It is shown that any pair of Lagrangian subspaces can be joined by a geodesic of this connection. A Finsler metric can also be introduced, if one regards subspaces L as projections pL (=the orthogonal projection onto L) or symmetries ε{lunate}L = 2 pL - I, namely measuring tangent vectors with the operator norm. We show that for this metric the Hopf-Rinow theorem is valid in Λ (H): a geodesic joining a pair of Lagrangian subspaces can be chosen to be of minimal length. A similar result holds for the unitary orbit of a Lagrangian subspace under the action of the k-Schatten unitary group (2 ≤ k ≤ ∞), with the Finsler metric given by the k-norm.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
ANALYSIS ON MANIFOLDS  
dc.subject
COMPLEX STRUCTURE  
dc.subject
GLOBAL ANALYSIS  
dc.subject
LAGRANGIAN SUBSPACE  
dc.subject
REAL AND COMPLEX DIFFERENTIAL GEOMETRY  
dc.subject
SHORT GEODESIC  
dc.subject
SYMPLECTIC GEOMETRY  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Lagrangian Grassmannian in infinite dimension  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-11-11T15:23:02Z  
dc.journal.volume
59  
dc.journal.number
3  
dc.journal.pagination
306-320  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Ámsterdam  
dc.description.fil
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina  
dc.description.fil
Fil: Larotonda, Gabriel Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina  
dc.journal.title
Journal Of Geometry And Physics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S039304400800185X  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.geomphys.2008.11.004  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/0808.2270