Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Lagrangian Grassmannian in infinite dimension

Andruchow, EstebanIcon ; Larotonda, Gabriel AndrésIcon
Fecha de publicación: 03/2009
Editorial: Elsevier Science
Revista: Journal Of Geometry And Physics
ISSN: 0393-0440
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Pura

Resumen

Given a complex structure J on a real (finite or infinite dimensional) Hilbert space H, we study the geometry of the Lagrangian Grassmannian Λ (H) of H, i.e. the set of closed linear subspaces L ⊂ H such that J (L) = L⊥. The complex unitary group U (HJ), consisting of the elements of the orthogonal group of H which are complex linear for the given complex structure, acts transitively on Λ (H) and induces a natural linear connection in Λ (H). It is shown that any pair of Lagrangian subspaces can be joined by a geodesic of this connection. A Finsler metric can also be introduced, if one regards subspaces L as projections pL (=the orthogonal projection onto L) or symmetries ε{lunate}L = 2 pL - I, namely measuring tangent vectors with the operator norm. We show that for this metric the Hopf-Rinow theorem is valid in Λ (H): a geodesic joining a pair of Lagrangian subspaces can be chosen to be of minimal length. A similar result holds for the unitary orbit of a Lagrangian subspace under the action of the k-Schatten unitary group (2 ≤ k ≤ ∞), with the Finsler metric given by the k-norm.
Palabras clave: ANALYSIS ON MANIFOLDS , COMPLEX STRUCTURE , GLOBAL ANALYSIS , LAGRANGIAN SUBSPACE , REAL AND COMPLEX DIFFERENTIAL GEOMETRY , SHORT GEODESIC , SYMPLECTIC GEOMETRY
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 224.2Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/93033
URL: https://www.sciencedirect.com/science/article/pii/S039304400800185X
DOI: http://dx.doi.org/10.1016/j.geomphys.2008.11.004
URL: https://arxiv.org/abs/0808.2270
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Andruchow, Esteban; Larotonda, Gabriel Andrés; Lagrangian Grassmannian in infinite dimension; Elsevier Science; Journal Of Geometry And Physics; 59; 3; 3-2009; 306-320
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES