Mostrar el registro sencillo del ítem
dc.contributor.author
Andruchow, Esteban
dc.contributor.author
Larotonda, Gabriel Andrés
dc.date.available
2019-12-27T03:40:56Z
dc.date.issued
2008-10
dc.identifier.citation
Andruchow, Esteban; Larotonda, Gabriel Andrés; Hopf-Rinow theorem in the Sato Grassmannian; Academic Press Inc Elsevier Science; Journal of Functional Analysis; 255; 7; 10-2008; 1692-1712
dc.identifier.issn
0022-1236
dc.identifier.uri
http://hdl.handle.net/11336/93027
dc.description.abstract
Let U2 (H) be the Banach-Lie group of unitary operators in the Hilbert space H which are Hilbert-Schmidt perturbations of the identity 1. In this paper we study the geometry of the unitary orbit{u p u* : u ∈ U2 (H)}, of an infinite projection p in H. This orbit coincides with the connected component of p in the Hilbert-Schmidt restricted Grassmannian Grres (p) (also known in the literature as the Sato Grassmannian) corresponding to the polarization H = p (H) ⊕ p (H)⊥. It is known that the components of Grres (p) are differentiable manifolds. Here we give a simple proof of the fact that Grres0 (p) is a smooth submanifold of the affine Hilbert space p + B2 (H), where B2 (H) denotes the space of Hilbert-Schmidt operators of H. Also we show that Grres0 (p) is a homogeneous reductive space. We introduce a natural metric, which consists in endowing every tangent space with the trace inner product, and consider its Levi-Civita connection. This connection has been considered before, for instance its sectional curvature has been computed. We show that the Levi-Civita connection coincides with a linear connection induced by the reductive structure, a fact which allows for the easy computation of the geodesic curves. We prove that the geodesics of the connection, which are of the form γ (t) = et z p e- t z, for z a p-co-diagonal anti-hermitic element of B2 (H), have minimal length provided that {norm of matrix} z {norm of matrix} ≤ π / 2. Note that the condition is given in terms of the usual operator norm, a fact which implies that there exist minimal geodesics of arbitrary length. Also we show that any two points p1, p2 ∈ Grres0 (p) are joined by a minimal geodesic. If moreover {norm of matrix} p1 - p2 {norm of matrix} < 1, the minimal geodesic is unique. Finally, we replace the 2-norm by the k-Schatten norm (k > 2), and prove that the geodesics are also minimal for these norms, up to a critical value of t, which is estimated also in terms of the usual operator norm. In the process, minimality results in the k-norms are also obtained for the group U2 (H).
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Academic Press Inc Elsevier Science
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
HILBERT-SCHMIDT OPERATORS
dc.subject
INFINITE PROJECTIONS
dc.subject
SATO GRASSMANNIAN
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Hopf-Rinow theorem in the Sato Grassmannian
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-11-11T15:23:40Z
dc.journal.volume
255
dc.journal.number
7
dc.journal.pagination
1692-1712
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento; Argentina
dc.description.fil
Fil: Larotonda, Gabriel Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
dc.journal.title
Journal of Functional Analysis
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022123608003005
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/0808.2525
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jfa.2008.07.027
Archivos asociados