Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Hopf-Rinow theorem in the Sato Grassmannian

Andruchow, EstebanIcon ; Larotonda, Gabriel AndrésIcon
Fecha de publicación: 10/2008
Editorial: Academic Press Inc Elsevier Science
Revista: Journal of Functional Analysis
ISSN: 0022-1236
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Pura

Resumen

Let U2 (H) be the Banach-Lie group of unitary operators in the Hilbert space H which are Hilbert-Schmidt perturbations of the identity 1. In this paper we study the geometry of the unitary orbit{u p u* : u ∈ U2 (H)}, of an infinite projection p in H. This orbit coincides with the connected component of p in the Hilbert-Schmidt restricted Grassmannian Grres (p) (also known in the literature as the Sato Grassmannian) corresponding to the polarization H = p (H) ⊕ p (H)⊥. It is known that the components of Grres (p) are differentiable manifolds. Here we give a simple proof of the fact that Grres0 (p) is a smooth submanifold of the affine Hilbert space p + B2 (H), where B2 (H) denotes the space of Hilbert-Schmidt operators of H. Also we show that Grres0 (p) is a homogeneous reductive space. We introduce a natural metric, which consists in endowing every tangent space with the trace inner product, and consider its Levi-Civita connection. This connection has been considered before, for instance its sectional curvature has been computed. We show that the Levi-Civita connection coincides with a linear connection induced by the reductive structure, a fact which allows for the easy computation of the geodesic curves. We prove that the geodesics of the connection, which are of the form γ (t) = et z p e- t z, for z a p-co-diagonal anti-hermitic element of B2 (H), have minimal length provided that {norm of matrix} z {norm of matrix} ≤ π / 2. Note that the condition is given in terms of the usual operator norm, a fact which implies that there exist minimal geodesics of arbitrary length. Also we show that any two points p1, p2 ∈ Grres0 (p) are joined by a minimal geodesic. If moreover {norm of matrix} p1 - p2 {norm of matrix} < 1, the minimal geodesic is unique. Finally, we replace the 2-norm by the k-Schatten norm (k > 2), and prove that the geodesics are also minimal for these norms, up to a critical value of t, which is estimated also in terms of the usual operator norm. In the process, minimality results in the k-norms are also obtained for the group U2 (H).
Palabras clave: HILBERT-SCHMIDT OPERATORS , INFINITE PROJECTIONS , SATO GRASSMANNIAN
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 217.6Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/93027
URL: https://www.sciencedirect.com/science/article/pii/S0022123608003005
DOI: http://dx.doi.org/10.1016/j.jfa.2008.07.027
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Andruchow, Esteban; Larotonda, Gabriel Andrés; Hopf-Rinow theorem in the Sato Grassmannian; Academic Press Inc Elsevier Science; Journal of Functional Analysis; 255; 7; 10-2008; 1692-1712
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES