Mostrar el registro sencillo del ítem

dc.contributor.author
Cornejo, Juan Manuel  
dc.contributor.author
Sankappanavar, Hanamantagouda P.  
dc.date.available
2019-12-23T17:38:14Z  
dc.date.issued
2019-08  
dc.identifier.citation
Cornejo, Juan Manuel; Sankappanavar, Hanamantagouda P.; Symmetric implication zroupoids and weak associative laws; Springer; Soft Computing - (Print); 23; 16; 8-2019; 6797-6812  
dc.identifier.issn
1472-7643  
dc.identifier.uri
http://hdl.handle.net/11336/92788  
dc.description.abstract
An algebra A= ⟨ A, → , 0 ⟩ , where → is binary and 0 is a constant, is called an implication zroupoid (I-zroupoid, for short) if A satisfies the identities: (x→y)→z≈((z′→x)→(y→z)′)′ and 0 ′ ′≈ 0 , where x′: = x→ 0. An implication zroupoid is symmetric if it satisfies: x′ ′≈ x and (x→y′)′≈(y→x′)′. The variety of symmetric I-zroupoids is denoted by S. We began a systematic analysis of weak associative laws (or identities) of length ≤ 4 in Cornejo and Sankappanavar (Soft Comput 22(13):4319–4333, 2018a. https://doi.org/10.1007/s00500-017-2869-z), by examining the identities of Bol–Moufang type, in the context of the variety S. In this paper, we complete the analysis by investigating the rest of the weak associative laws of length ≤ 4 relative to S. We show that, of the (possible) 155 subvarieties of S defined by the weak associative laws of length ≤ 4 , there are exactly 6 distinct ones. We also give an explicit description of the poset of the (distinct) subvarieties of S defined by weak associative laws of length ≤ 4.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
IDENTITY OF BOL–MOUFANG TYPE  
dc.subject
SEMILATTICE WITH LEAST ELEMENT 0  
dc.subject
SYMMETRIC IMPLICATION ZROUPOID  
dc.subject
WEAK ASSOCIATIVE LAW  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Symmetric implication zroupoids and weak associative laws  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-12-11T20:20:50Z  
dc.identifier.eissn
1433-7479  
dc.journal.volume
23  
dc.journal.number
16  
dc.journal.pagination
6797-6812  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlin  
dc.description.fil
Fil: Cornejo, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina  
dc.description.fil
Fil: Sankappanavar, Hanamantagouda P.. State University of New York; Estados Unidos  
dc.journal.title
Soft Computing - (Print)  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00500-018-03701-w  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00500-018-03701-w  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1710.10408