Artículo
Symmetric implication zroupoids and weak associative laws
Fecha de publicación:
08/2019
Editorial:
Springer
Revista:
Soft Computing - (Print)
ISSN:
1472-7643
e-ISSN:
1433-7479
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
An algebra A= ⟨ A, → , 0 ⟩ , where → is binary and 0 is a constant, is called an implication zroupoid (I-zroupoid, for short) if A satisfies the identities: (x→y)→z≈((z′→x)→(y→z)′)′ and 0 ′ ′≈ 0 , where x′: = x→ 0. An implication zroupoid is symmetric if it satisfies: x′ ′≈ x and (x→y′)′≈(y→x′)′. The variety of symmetric I-zroupoids is denoted by S. We began a systematic analysis of weak associative laws (or identities) of length ≤ 4 in Cornejo and Sankappanavar (Soft Comput 22(13):4319–4333, 2018a. https://doi.org/10.1007/s00500-017-2869-z), by examining the identities of Bol–Moufang type, in the context of the variety S. In this paper, we complete the analysis by investigating the rest of the weak associative laws of length ≤ 4 relative to S. We show that, of the (possible) 155 subvarieties of S defined by the weak associative laws of length ≤ 4 , there are exactly 6 distinct ones. We also give an explicit description of the poset of the (distinct) subvarieties of S defined by weak associative laws of length ≤ 4.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INMABB)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Citación
Cornejo, Juan Manuel; Sankappanavar, Hanamantagouda P.; Symmetric implication zroupoids and weak associative laws; Springer; Soft Computing - (Print); 23; 16; 8-2019; 6797-6812
Compartir
Altmétricas