Mostrar el registro sencillo del ítem

dc.contributor.author
Peña, Daniel  
dc.contributor.author
Smucler, Ezequiel  
dc.contributor.author
Yohai, Victor Jaime  
dc.date.available
2019-12-17T16:43:49Z  
dc.date.issued
2019-02  
dc.identifier.citation
Peña, Daniel; Smucler, Ezequiel; Yohai, Victor Jaime; Forecasting Multiple Time Series With One-Sided Dynamic Principal Components; American Statistical Association; Journal of The American Statistical Association; 2-2019; 1-43  
dc.identifier.issn
0162-1459  
dc.identifier.uri
http://hdl.handle.net/11336/92383  
dc.description.abstract
We define one-sided dynamic principal components (ODPC) for time series as linear combinations of the present and past values of the series that minimize the reconstruction mean squared error. Usually dynamic principal components have been defined as functions of past and future values of the series and therefore they are not appropriate for forecasting purposes. On the contrary, it is shown that the ODPC introduced in this article can be successfully used for forecasting high-dimensional multiple time series. An alternating least-squares algorithm to compute the proposed ODPC is presented. We prove that for stationary and ergodic time series the estimated values converge to their population analogs. We also prove that asymptotically, when both the number of series and the sample size go to infinity, if the data follow a dynamic factor model, the reconstruction obtained with ODPC converges in mean square to the common part of the factor model. The results of a simulation study show that the forecasts obtained with ODPC compare favorably with those obtained using other forecasting methods based on dynamic factor models.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Statistical Association  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
DIMENSIONALITY REDUCTION  
dc.subject
DYNAMIC FACTOR MODELS  
dc.subject
HIGH-DIMENSIONAL TIME SERIES  
dc.subject.classification
Estadística y Probabilidad  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Forecasting Multiple Time Series With One-Sided Dynamic Principal Components  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-12-16T19:09:18Z  
dc.journal.pagination
1-43  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Washington  
dc.description.fil
Fil: Peña, Daniel. Universidad Carlos III de Madrid. Instituto de Salud; España  
dc.description.fil
Fil: Smucler, Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina  
dc.description.fil
Fil: Yohai, Victor Jaime. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina  
dc.journal.title
Journal of The American Statistical Association  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/01621459.2018.1520117  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1080/01621459.2018.1520117