Artículo
Forecasting Multiple Time Series With One-Sided Dynamic Principal Components
Fecha de publicación:
02/2019
Editorial:
American Statistical Association
Revista:
Journal of The American Statistical Association
ISSN:
0162-1459
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We define one-sided dynamic principal components (ODPC) for time series as linear combinations of the present and past values of the series that minimize the reconstruction mean squared error. Usually dynamic principal components have been defined as functions of past and future values of the series and therefore they are not appropriate for forecasting purposes. On the contrary, it is shown that the ODPC introduced in this article can be successfully used for forecasting high-dimensional multiple time series. An alternating least-squares algorithm to compute the proposed ODPC is presented. We prove that for stationary and ergodic time series the estimated values converge to their population analogs. We also prove that asymptotically, when both the number of series and the sample size go to infinity, if the data follow a dynamic factor model, the reconstruction obtained with ODPC converges in mean square to the common part of the factor model. The results of a simulation study show that the forecasts obtained with ODPC compare favorably with those obtained using other forecasting methods based on dynamic factor models.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Citación
Peña, Daniel; Smucler, Ezequiel; Yohai, Victor Jaime; Forecasting Multiple Time Series With One-Sided Dynamic Principal Components; American Statistical Association; Journal of The American Statistical Association; 2-2019; 1-43
Compartir
Altmétricas