Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Robust insulin estimation under glycemic variability using Bayesian filtering and Gaussian process models

Avila, Luis OmarIcon ; de Paula, MarianoIcon ; Martínez, Ernesto CarlosIcon ; Errecalde, Marcelo Luis
Fecha de publicación: 04/2018
Editorial: Elsevier
Revista: Biomedical Signal Processing and Control
ISSN: 1746-8094
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información

Resumen

The ultimate goal of an artificial pancreas (AP) is finding the optimal insulin rates that can effectively reduce high blood glucose (BG) levels in type 1 diabetic patients. To achieve this, most autonomous closed-loop strategies continuously compute the optimal insulin bolus to be administrated on the basis of the estimated plasma concentrations for glucose and insulin. Unlike subcutaneous glucose levels which can be measured in real-time, unavailability of insulin sensors makes it essential the use of mathematical models so as to fully estimate plasma insulin concentrations. For model-based estimation, GP-Bayesian filters have been recently proposed to incorporate probabilistic non-parametric Gaussian process (GP) models of dynamic systems into Kalman filtering techniques. As a result, model uncertainty can explicitly be incorporated into the prediction step and in the filtering processes, which is usually not the case for more traditional filtering strategies that resort to parametric models for state estimation. More specifically, the question arises as to whether glycemic variability is properly taken into account in model formulations and whether it would compromise proper estimation of plasma insulin concentration. To tackle this, a stochastic glycemic model including variability was incorporated into different parametric and nonparametric filtering techniques to provide an estimate of the plasma insulin levels. In particular, we compared density representation against using knowledge about the parameterization of the transition dynamics and the observation function. We found that, as glycemic variability increases, filtering techniques based on parametric models rapidly degrades their performance as a consequence of large nonlinearities. Results show that Bayes’ filtering techniques increase predictability of the patient state, and thus, boost safety and performance in the AP control and monitoring tasks.
Palabras clave: BAYESIAN FILTERING , GAUSSIAN PROCESSES , GLYCEMIC VARIABILITY , PLASMA INSULIN ESTIMATION , STOCHASTIC MODEL
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.483Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/91524
URL: https://www.sciencedirect.com/science/article/pii/S1746809418300260
DOI: http://dx.doi.org/10.1016/j.bspc.2018.01.019
Colecciones
Articulos(CCT - SAN LUIS)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SAN LUIS
Articulos(CIFICEN)
Articulos de CENTRO DE INV. EN FISICA E INGENIERIA DEL CENTRO DE LA PCIA. DE BS. AS.
Articulos(INGAR)
Articulos de INST.DE DESARROLLO Y DISEÑO (I)
Citación
Avila, Luis Omar; de Paula, Mariano; Martínez, Ernesto Carlos; Errecalde, Marcelo Luis; Robust insulin estimation under glycemic variability using Bayesian filtering and Gaussian process models; Elsevier; Biomedical Signal Processing and Control; 42; 4-2018; 63-72
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES