Mostrar el registro sencillo del ítem

dc.contributor.author
Rios, Carlos  
dc.contributor.author
Schiaffino, Silvia Noemi  
dc.contributor.author
Godoy, Daniela Lis  
dc.date.available
2019-11-29T19:31:15Z  
dc.date.issued
2018-03-05  
dc.identifier.citation
Rios, Carlos; Schiaffino, Silvia Noemi; Godoy, Daniela Lis; A study of neighbour selection strategies for POI recommendation in LBSNs; Sage Publications Ltd; Journal Of Information Science; 44; 6; 5-3-2018; 802-817  
dc.identifier.issn
0165-5515  
dc.identifier.uri
http://hdl.handle.net/11336/91004  
dc.description.abstract
Location-based Recommender Systems (LBRSs) are gaining importance with the proliferation of location-based services provided by mobile devices as well as user-generated content in social networks. Collaborative approaches for recommendation rely on the opinions of liked-minded people, so called neighbors, for prediction. Thus, an adequate selection of such neighbors becomes essential for achieving good prediction results. The aim of this work is to explore different strategies to select neighbors in the context of a collaborative filtering based recommender system for POI (places of interest) recommendations. Whereas standard methods are based on user similarity to delimit a neighborhood, in this work several strategies are proposed based on direct social relationships and geographical information extracted from Location-based Social Networks (LBSNs). The impact of the different strategies proposed has been evaluated and compared against the traditional collaborative filtering approach using a dataset from a popular network as Foursquare. In general terms, the proposed strategies for selecting neighbors based on the different elements available in a LBSN achieve better results than the traditional collaborative filtering approach. Our findings can be helpful both to researchers in the recommender systems area as well as to recommender systems developers in the context of LBSNs, since they can take into account our results to design and provide more effective services considering the huge amount of knowledge produced in LBSNs.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Sage Publications Ltd  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights
Atribución-NoComercial-CompartirIgual 2.5 Argentina (CC BY-NC-SA 2.5 AR)  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
LOCATION-BASED SOCIAL NETWORKS  
dc.subject
RECOMMENDER SYSTEMS  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A study of neighbour selection strategies for POI recommendation in LBSNs  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-10-21T20:04:58Z  
dc.journal.volume
44  
dc.journal.number
6  
dc.journal.pagination
802-817  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Rios, Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina  
dc.description.fil
Fil: Schiaffino, Silvia Noemi. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina  
dc.description.fil
Fil: Godoy, Daniela Lis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina  
dc.journal.title
Journal Of Information Science  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://journals.sagepub.com/doi/10.1177/0165551518761000  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1177%2F0165551518761000