Mostrar el registro sencillo del ítem
dc.contributor.author
Rios, Carlos
dc.contributor.author
Schiaffino, Silvia Noemi
dc.contributor.author
Godoy, Daniela Lis
dc.date.available
2019-11-29T19:31:15Z
dc.date.issued
2018-03-05
dc.identifier.citation
Rios, Carlos; Schiaffino, Silvia Noemi; Godoy, Daniela Lis; A study of neighbour selection strategies for POI recommendation in LBSNs; Sage Publications Ltd; Journal Of Information Science; 44; 6; 5-3-2018; 802-817
dc.identifier.issn
0165-5515
dc.identifier.uri
http://hdl.handle.net/11336/91004
dc.description.abstract
Location-based Recommender Systems (LBRSs) are gaining importance with the proliferation of location-based services provided by mobile devices as well as user-generated content in social networks. Collaborative approaches for recommendation rely on the opinions of liked-minded people, so called neighbors, for prediction. Thus, an adequate selection of such neighbors becomes essential for achieving good prediction results. The aim of this work is to explore different strategies to select neighbors in the context of a collaborative filtering based recommender system for POI (places of interest) recommendations. Whereas standard methods are based on user similarity to delimit a neighborhood, in this work several strategies are proposed based on direct social relationships and geographical information extracted from Location-based Social Networks (LBSNs). The impact of the different strategies proposed has been evaluated and compared against the traditional collaborative filtering approach using a dataset from a popular network as Foursquare. In general terms, the proposed strategies for selecting neighbors based on the different elements available in a LBSN achieve better results than the traditional collaborative filtering approach. Our findings can be helpful both to researchers in the recommender systems area as well as to recommender systems developers in the context of LBSNs, since they can take into account our results to design and provide more effective services considering the huge amount of knowledge produced in LBSNs.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Sage Publications Ltd
dc.rights
info:eu-repo/semantics/openAccess
dc.rights
Atribución-NoComercial-CompartirIgual 2.5 Argentina (CC BY-NC-SA 2.5 AR)
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
LOCATION-BASED SOCIAL NETWORKS
dc.subject
RECOMMENDER SYSTEMS
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
A study of neighbour selection strategies for POI recommendation in LBSNs
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-10-21T20:04:58Z
dc.journal.volume
44
dc.journal.number
6
dc.journal.pagination
802-817
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Rios, Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
dc.description.fil
Fil: Schiaffino, Silvia Noemi. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
dc.description.fil
Fil: Godoy, Daniela Lis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
dc.journal.title
Journal Of Information Science
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://journals.sagepub.com/doi/10.1177/0165551518761000
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1177%2F0165551518761000
Archivos asociados