Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A study of neighbour selection strategies for POI recommendation in LBSNs

Rios, CarlosIcon ; Schiaffino, Silvia NoemiIcon ; Godoy, Daniela LisIcon
Fecha de publicación: 05/03/2018
Editorial: Sage Publications Ltd
Revista: Journal Of Information Science
ISSN: 0165-5515
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

Location-based Recommender Systems (LBRSs) are gaining importance with the proliferation of location-based services provided by mobile devices as well as user-generated content in social networks. Collaborative approaches for recommendation rely on the opinions of liked-minded people, so called neighbors, for prediction. Thus, an adequate selection of such neighbors becomes essential for achieving good prediction results. The aim of this work is to explore different strategies to select neighbors in the context of a collaborative filtering based recommender system for POI (places of interest) recommendations. Whereas standard methods are based on user similarity to delimit a neighborhood, in this work several strategies are proposed based on direct social relationships and geographical information extracted from Location-based Social Networks (LBSNs). The impact of the different strategies proposed has been evaluated and compared against the traditional collaborative filtering approach using a dataset from a popular network as Foursquare. In general terms, the proposed strategies for selecting neighbors based on the different elements available in a LBSN achieve better results than the traditional collaborative filtering approach. Our findings can be helpful both to researchers in the recommender systems area as well as to recommender systems developers in the context of LBSNs, since they can take into account our results to design and provide more effective services considering the huge amount of knowledge produced in LBSNs.
Palabras clave: LOCATION-BASED SOCIAL NETWORKS , RECOMMENDER SYSTEMS
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.662Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/91004
URL: http://journals.sagepub.com/doi/10.1177/0165551518761000
DOI: https://doi.org/10.1177%2F0165551518761000
Colecciones
Articulos(ISISTAN)
Articulos de INSTITUTO SUPERIOR DE INGENIERIA DEL SOFTWARE
Citación
Rios, Carlos; Schiaffino, Silvia Noemi; Godoy, Daniela Lis; A study of neighbour selection strategies for POI recommendation in LBSNs; Sage Publications Ltd; Journal Of Information Science; 44; 6; 5-3-2018; 802-817
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES