Mostrar el registro sencillo del ítem

dc.contributor.author
Tommasel, Antonela  
dc.contributor.author
Godoy, Daniela Lis  
dc.date.available
2019-11-29T19:27:33Z  
dc.date.issued
2018-05  
dc.identifier.citation
Tommasel, Antonela; Godoy, Daniela Lis; Multi-view community detection with heterogeneous information from social media data; Elsevier Science; Neurocomputing; 289; 5-2018; 195-219  
dc.identifier.issn
0925-2312  
dc.identifier.uri
http://hdl.handle.net/11336/91002  
dc.description.abstract
Since their beginnings, social networks have affected the way people communicate and interact with each other. The continuous growing and pervasive use of social media offers interesting research opportunities for analysing the behaviour and interactions of users. Nowadays, interactions are not only limited to social relations, but also to reading and writing activities. Thus, multiple and complementary information sources are available for characterising users and their activities. One task that could benefit from the integration of those multiple sources is community detection. However, most techniques disregard the effect of information aggregation and continue to focus only on one aspect: the topological structure of networks. This paper focuses on how to integrate social and content-based information originated in social networks for improving the quality of the detected communities. A technique for integrating both the multiple information sources and the semantics conveyed by asymmetric relations is proposed and extensively evaluated on two real-world datasets. Experimental evaluation confirmed the differentiated impact that each information source has on the quality of the detected communities, and shed some light on how to improve such quality by combining both social and content-based information.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
COMMUNITY DETECTION  
dc.subject
COMMUNITY STRUCTURE  
dc.subject
MULTI-VIEW LEARNING  
dc.subject
SOCIAL GRAPH  
dc.subject
SOCIAL NETWORKS  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Multi-view community detection with heterogeneous information from social media data  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-10-21T20:05:05Z  
dc.journal.volume
289  
dc.journal.pagination
195-219  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Tommasel, Antonela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina  
dc.description.fil
Fil: Godoy, Daniela Lis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina  
dc.journal.title
Neurocomputing  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.neucom.2018.02.023  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0925231218301528