Mostrar el registro sencillo del ítem
dc.contributor.author
Tommasel, Antonela
dc.contributor.author
Godoy, Daniela Lis
dc.date.available
2019-11-29T19:27:33Z
dc.date.issued
2018-05
dc.identifier.citation
Tommasel, Antonela; Godoy, Daniela Lis; Multi-view community detection with heterogeneous information from social media data; Elsevier Science; Neurocomputing; 289; 5-2018; 195-219
dc.identifier.issn
0925-2312
dc.identifier.uri
http://hdl.handle.net/11336/91002
dc.description.abstract
Since their beginnings, social networks have affected the way people communicate and interact with each other. The continuous growing and pervasive use of social media offers interesting research opportunities for analysing the behaviour and interactions of users. Nowadays, interactions are not only limited to social relations, but also to reading and writing activities. Thus, multiple and complementary information sources are available for characterising users and their activities. One task that could benefit from the integration of those multiple sources is community detection. However, most techniques disregard the effect of information aggregation and continue to focus only on one aspect: the topological structure of networks. This paper focuses on how to integrate social and content-based information originated in social networks for improving the quality of the detected communities. A technique for integrating both the multiple information sources and the semantics conveyed by asymmetric relations is proposed and extensively evaluated on two real-world datasets. Experimental evaluation confirmed the differentiated impact that each information source has on the quality of the detected communities, and shed some light on how to improve such quality by combining both social and content-based information.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
COMMUNITY DETECTION
dc.subject
COMMUNITY STRUCTURE
dc.subject
MULTI-VIEW LEARNING
dc.subject
SOCIAL GRAPH
dc.subject
SOCIAL NETWORKS
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Multi-view community detection with heterogeneous information from social media data
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-10-21T20:05:05Z
dc.journal.volume
289
dc.journal.pagination
195-219
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Tommasel, Antonela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
dc.description.fil
Fil: Godoy, Daniela Lis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
dc.journal.title
Neurocomputing
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.neucom.2018.02.023
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0925231218301528
Archivos asociados