Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Multi-view community detection with heterogeneous information from social media data

Tommasel, AntonelaIcon ; Godoy, Daniela LisIcon
Fecha de publicación: 05/2018
Editorial: Elsevier Science
Revista: Neurocomputing
ISSN: 0925-2312
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

Since their beginnings, social networks have affected the way people communicate and interact with each other. The continuous growing and pervasive use of social media offers interesting research opportunities for analysing the behaviour and interactions of users. Nowadays, interactions are not only limited to social relations, but also to reading and writing activities. Thus, multiple and complementary information sources are available for characterising users and their activities. One task that could benefit from the integration of those multiple sources is community detection. However, most techniques disregard the effect of information aggregation and continue to focus only on one aspect: the topological structure of networks. This paper focuses on how to integrate social and content-based information originated in social networks for improving the quality of the detected communities. A technique for integrating both the multiple information sources and the semantics conveyed by asymmetric relations is proposed and extensively evaluated on two real-world datasets. Experimental evaluation confirmed the differentiated impact that each information source has on the quality of the detected communities, and shed some light on how to improve such quality by combining both social and content-based information.
Palabras clave: COMMUNITY DETECTION , COMMUNITY STRUCTURE , MULTI-VIEW LEARNING , SOCIAL GRAPH , SOCIAL NETWORKS
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 4.100Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/91002
DOI: http://dx.doi.org/10.1016/j.neucom.2018.02.023
URL: https://www.sciencedirect.com/science/article/pii/S0925231218301528
Colecciones
Articulos(ISISTAN)
Articulos de INSTITUTO SUPERIOR DE INGENIERIA DEL SOFTWARE
Citación
Tommasel, Antonela; Godoy, Daniela Lis; Multi-view community detection with heterogeneous information from social media data; Elsevier Science; Neurocomputing; 289; 5-2018; 195-219
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES