Mostrar el registro sencillo del ítem

dc.contributor.author
Mateos Diaz, Cristian Maximiliano  
dc.contributor.author
Pacini Naumovich, Elina Rocío  
dc.contributor.author
Garcia Garino, Carlos Gabriel  
dc.date.available
2019-11-29T19:22:21Z  
dc.date.issued
2013-02  
dc.identifier.citation
Mateos Diaz, Cristian Maximiliano; Pacini Naumovich, Elina Rocío; Garcia Garino, Carlos Gabriel; An ACO-inspired algorithm for minimizing weighted flowtime in cloud-based parameter sweep experiments; Elsevier; Advances in Engineering Software; 56; 2-2013; 38-50  
dc.identifier.issn
0965-9978  
dc.identifier.uri
http://hdl.handle.net/11336/90999  
dc.description.abstract
Parameter Sweep Experiments (PSEs) allow scientists and engineers to conduct experiments by running the same program code against different input data. This usually results in many jobs with high computational requirements. Thus, distributed environments, particularly Clouds, can be employed to fulfill these demands. However, job scheduling is challenging as it is an NP-complete problem. Recently, Cloud schedulers based on bio-inspired techniques-which work well in approximating problems with little input information-have been proposed. Unfortunately, existing proposals ignore job priorities, which is a very important aspect in PSEs since it allows accelerating PSE results processing and visualization in scientific Clouds. We present a new Cloud scheduler based on Ant Colony Optimization, the most popular bio-inspired technique, which also exploits well-known notions from operating systems theory. Simulated experiments performed with real PSE job data and other Cloud scheduling policies indicate that our proposal allows for a more agile job handling while reducing PSE completion time.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
ANT COLONY OPTIMIZATION  
dc.subject
CLOUD COMPUTING  
dc.subject
JOB SCHEDULING  
dc.subject
PARAMETER SWEEP EXPERIMENTS  
dc.subject
SWARM INTELLIGENCE  
dc.subject
WEIGHTED FLOWTIME  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
An ACO-inspired algorithm for minimizing weighted flowtime in cloud-based parameter sweep experiments  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-06-26T13:27:46Z  
dc.journal.volume
56  
dc.journal.pagination
38-50  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina  
dc.description.fil
Fil: Pacini Naumovich, Elina Rocío. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Informacion y las Comunicaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Garcia Garino, Carlos Gabriel. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Informacion y las Comunicaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Advances in Engineering Software  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0965997812001585  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.advengsoft.2012.11.011