Mostrar el registro sencillo del ítem
dc.contributor.author
Mateos Diaz, Cristian Maximiliano
dc.contributor.author
Pacini Naumovich, Elina Rocío
dc.contributor.author
Garcia Garino, Carlos Gabriel
dc.date.available
2019-11-29T19:22:21Z
dc.date.issued
2013-02
dc.identifier.citation
Mateos Diaz, Cristian Maximiliano; Pacini Naumovich, Elina Rocío; Garcia Garino, Carlos Gabriel; An ACO-inspired algorithm for minimizing weighted flowtime in cloud-based parameter sweep experiments; Elsevier; Advances in Engineering Software; 56; 2-2013; 38-50
dc.identifier.issn
0965-9978
dc.identifier.uri
http://hdl.handle.net/11336/90999
dc.description.abstract
Parameter Sweep Experiments (PSEs) allow scientists and engineers to conduct experiments by running the same program code against different input data. This usually results in many jobs with high computational requirements. Thus, distributed environments, particularly Clouds, can be employed to fulfill these demands. However, job scheduling is challenging as it is an NP-complete problem. Recently, Cloud schedulers based on bio-inspired techniques-which work well in approximating problems with little input information-have been proposed. Unfortunately, existing proposals ignore job priorities, which is a very important aspect in PSEs since it allows accelerating PSE results processing and visualization in scientific Clouds. We present a new Cloud scheduler based on Ant Colony Optimization, the most popular bio-inspired technique, which also exploits well-known notions from operating systems theory. Simulated experiments performed with real PSE job data and other Cloud scheduling policies indicate that our proposal allows for a more agile job handling while reducing PSE completion time.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
ANT COLONY OPTIMIZATION
dc.subject
CLOUD COMPUTING
dc.subject
JOB SCHEDULING
dc.subject
PARAMETER SWEEP EXPERIMENTS
dc.subject
SWARM INTELLIGENCE
dc.subject
WEIGHTED FLOWTIME
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
An ACO-inspired algorithm for minimizing weighted flowtime in cloud-based parameter sweep experiments
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-06-26T13:27:46Z
dc.journal.volume
56
dc.journal.pagination
38-50
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
dc.description.fil
Fil: Pacini Naumovich, Elina Rocío. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Informacion y las Comunicaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Garcia Garino, Carlos Gabriel. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Informacion y las Comunicaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Advances in Engineering Software
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0965997812001585
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.advengsoft.2012.11.011
Archivos asociados