Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

An ACO-inspired algorithm for minimizing weighted flowtime in cloud-based parameter sweep experiments

Mateos Diaz, Cristian MaximilianoIcon ; Pacini Naumovich, Elina RocíoIcon ; Garcia Garino, Carlos GabrielIcon
Fecha de publicación: 02/2013
Editorial: Elsevier
Revista: Advances in Engineering Software
ISSN: 0965-9978
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

Parameter Sweep Experiments (PSEs) allow scientists and engineers to conduct experiments by running the same program code against different input data. This usually results in many jobs with high computational requirements. Thus, distributed environments, particularly Clouds, can be employed to fulfill these demands. However, job scheduling is challenging as it is an NP-complete problem. Recently, Cloud schedulers based on bio-inspired techniques-which work well in approximating problems with little input information-have been proposed. Unfortunately, existing proposals ignore job priorities, which is a very important aspect in PSEs since it allows accelerating PSE results processing and visualization in scientific Clouds. We present a new Cloud scheduler based on Ant Colony Optimization, the most popular bio-inspired technique, which also exploits well-known notions from operating systems theory. Simulated experiments performed with real PSE job data and other Cloud scheduling policies indicate that our proposal allows for a more agile job handling while reducing PSE completion time.
Palabras clave: ANT COLONY OPTIMIZATION , CLOUD COMPUTING , JOB SCHEDULING , PARAMETER SWEEP EXPERIMENTS , SWARM INTELLIGENCE , WEIGHTED FLOWTIME
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 703.4Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/90999
URL: https://www.sciencedirect.com/science/article/abs/pii/S0965997812001585
DOI: https://doi.org/10.1016/j.advengsoft.2012.11.011
Colecciones
Articulos(CCT - MENDOZA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MENDOZA
Articulos(ISISTAN)
Articulos de INSTITUTO SUPERIOR DE INGENIERIA DEL SOFTWARE
Citación
Mateos Diaz, Cristian Maximiliano; Pacini Naumovich, Elina Rocío; Garcia Garino, Carlos Gabriel; An ACO-inspired algorithm for minimizing weighted flowtime in cloud-based parameter sweep experiments; Elsevier; Advances in Engineering Software; 56; 2-2013; 38-50
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES