Mostrar el registro sencillo del ítem

dc.contributor.author
Ibáñez, Santiago Agustín  
dc.contributor.author
Risau Gusman, Sebastian Luis  
dc.contributor.author
Bouzat, Sebastian  
dc.date.available
2016-12-07T21:23:58Z  
dc.date.issued
2013-02  
dc.identifier.citation
Ibáñez, Santiago Agustín; Risau Gusman, Sebastian Luis; Bouzat, Sebastian; Understanding the Lévy Ratchets in Terms of Lévy Jumps; Iop Publishing; Journal Of Statistical Mechanics: Theory And Experiment; 2013; 2007; 2-2013; 1-19  
dc.identifier.issn
1742-5468  
dc.identifier.uri
http://hdl.handle.net/11336/9061  
dc.description.abstract
We investigate the overdamped dynamics of a particle in a spatially periodic potential with broken reflection symmetry and subject to the action of a symmetric white Lévy noise. The system (referred to as the Lévy ratchet) has been previously studied using both Langevin and fractional Fokker–Planck formalisms, with the main find being the existence of a preferred direction of motion toward the steepest slope of the potential, producing a non-vanishing current. In this contribution we develop a semi-analytical study combining the Fokker–Planck and Langevin formalisms to explore the role of Lévy flights on the system dynamics. We analyze the departure positions of Lévy jumps that take the particle out of a potential well as well as the rates and lengths of such jumps, and we study the way in which long jumps determine the non-vanishing current. We also discuss the essential difference from the Gaussian-noise case (producing no current). Finally we study the current for different potential shapes as a function of the amplitude of the potential barrier. In particular, we show that standard Lévy ratchets produce a non-vanishing current in the infinite-barrier limit. This latter counterintuitive result can be easily understood in terms of the long Lévy jumps and analytically demonstrated.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Iop Publishing  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Diffusion  
dc.subject
Transport Processes  
dc.subject
Stochastic Particle Dynamics  
dc.subject.classification
Otras Ciencias Físicas  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Understanding the Lévy Ratchets in Terms of Lévy Jumps  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2016-12-06T16:32:18Z  
dc.identifier.eissn
1742-5468  
dc.journal.volume
2013  
dc.journal.number
2007  
dc.journal.pagination
1-19  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Ibáñez, Santiago Agustín. Comision Nacional de Energia Atomica. Gerencia del Area de Investigaciones y Aplicaciones no Nucleares. Gerencia de Fisica (CAB); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Risau Gusman, Sebastian Luis. Comision Nacional de Energia Atomica. Gerencia del Area de Investigaciones y Aplicaciones no Nucleares. Gerencia de Fisica (CAB); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Bouzat, Sebastian. Comision Nacional de Energia Atomica. Gerencia del Area de Investigaciones y Aplicaciones no Nucleares. Gerencia de Fisica (CAB); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Journal Of Statistical Mechanics: Theory And Experiment  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/1742-5468/2013/02/P02007/meta  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1088/1742-5468/2013/02/P02007