Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Understanding the Lévy Ratchets in Terms of Lévy Jumps

Ibáñez, Santiago AgustínIcon ; Risau Gusman, Sebastian LuisIcon ; Bouzat, SebastianIcon
Fecha de publicación: 02/2013
Editorial: Iop Publishing
Revista: Journal Of Statistical Mechanics: Theory And Experiment
ISSN: 1742-5468
e-ISSN: 1742-5468
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Físicas

Resumen

We investigate the overdamped dynamics of a particle in a spatially periodic potential with broken reflection symmetry and subject to the action of a symmetric white Lévy noise. The system (referred to as the Lévy ratchet) has been previously studied using both Langevin and fractional Fokker–Planck formalisms, with the main find being the existence of a preferred direction of motion toward the steepest slope of the potential, producing a non-vanishing current. In this contribution we develop a semi-analytical study combining the Fokker–Planck and Langevin formalisms to explore the role of Lévy flights on the system dynamics. We analyze the departure positions of Lévy jumps that take the particle out of a potential well as well as the rates and lengths of such jumps, and we study the way in which long jumps determine the non-vanishing current. We also discuss the essential difference from the Gaussian-noise case (producing no current). Finally we study the current for different potential shapes as a function of the amplitude of the potential barrier. In particular, we show that standard Lévy ratchets produce a non-vanishing current in the infinite-barrier limit. This latter counterintuitive result can be easily understood in terms of the long Lévy jumps and analytically demonstrated.
Palabras clave: Diffusion , Transport Processes , Stochastic Particle Dynamics
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 915.8Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/9061
URL: http://iopscience.iop.org/article/10.1088/1742-5468/2013/02/P02007/meta
DOI: http://dx.doi.org/10.1088/1742-5468/2013/02/P02007
Colecciones
Articulos(CCT - PATAGONIA NORTE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - PATAGONIA NORTE
Citación
Ibáñez, Santiago Agustín; Risau Gusman, Sebastian Luis; Bouzat, Sebastian; Understanding the Lévy Ratchets in Terms of Lévy Jumps; Iop Publishing; Journal Of Statistical Mechanics: Theory And Experiment; 2013; 2007; 2-2013; 1-19
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES