Mostrar el registro sencillo del ítem
dc.contributor.author
Donnelly Kehoe, Patricio Andres

dc.contributor.author
Pascariello, Guido Orlando

dc.contributor.author
Gómez, Juan Carlos
dc.date.available
2019-11-26T20:12:56Z
dc.date.issued
2018-05
dc.identifier.citation
Donnelly Kehoe, Patricio Andres; Pascariello, Guido Orlando; Gómez, Juan Carlos; Looking for Alzheimer's Disease morphometric signatures using machine learning techniques; Elsevier Science; Journal of Neuroscience Methods; 302; 5-2018; 24-34
dc.identifier.issn
0165-0270
dc.identifier.uri
http://hdl.handle.net/11336/90568
dc.description.abstract
Background: We present our results in the International challenge for automated prediction of MCI from MRI data. We evaluate the performance of MRI-based neuromorphometrics features (nMF) in the classification of Healthy Controls (HC), Mild Cognitive Impairment (MCI), converters MCI (cMCI) and Alzheimer's Disease (AD) patients. New methods: We propose to segregate participants in three groups according to Mini Mental State Examination score (MMSEs), searching for the main nMF in each group. Then we use them to develop a Multi Classifier System (MCS). We compare the MCS against a single classifier scheme using both MMSEs+nMF and nMF only. We repeat this comparison using three state-of-the-art classification algorithms. Results: The MCS showed the best performance on both Accuracy and Area Under the Receiver Operating Curve (AUC) in comparison with single classifiers. The multiclass AUC for the MCS classification on Test Dataset were 0.83 for HC, 0.76 for cMCI, 0.65 for MCI and 0.95 for AD. Furthermore, MCS's optimum accuracy on Neurodegenerative Disease (ND) detection (AD+cMCI vs MCI+HC) was 81.0% (AUC = 0.88), while the single classifiers got 71.3% (AUC = 0.86) and 63.1% (AUC = 0.79) for MMSEs+nMF and only nMF respectively. Comparison with existing method: The proposed MCS showed a better performance than using all nMF into a single state-of-the-art classifier. Conclusions: These findings suggest that using cognitive scoring, e.g. MMSEs, in the design of a Multi Classifier System improves performance by allowing a better selection of MRI-based features.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science

dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
ALZHEIMER'S DISEASE
dc.subject
CLASSIFICATION
dc.subject
MACHINE LEARNING
dc.subject
MILD COGNITIVE IMPAIRMENT
dc.subject
MORPHOMETRIC ANALYSIS
dc.subject
NEUROSCIENCE
dc.subject
STRUCTURAL MRI
dc.subject.classification
Ciencias de la Información y Bioinformática

dc.subject.classification
Ciencias de la Computación e Información

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.subject.classification
Neurología Clínica

dc.subject.classification
Medicina Clínica

dc.subject.classification
CIENCIAS MÉDICAS Y DE LA SALUD

dc.subject.classification
Ingeniería Médica

dc.subject.classification
Ingeniería Médica

dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS

dc.title
Looking for Alzheimer's Disease morphometric signatures using machine learning techniques
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-10-17T14:55:32Z
dc.journal.volume
302
dc.journal.pagination
24-34
dc.journal.pais
Países Bajos

dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Donnelly Kehoe, Patricio Andres. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Pascariello, Guido Orlando. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Gómez, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Journal of Neuroscience Methods

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0165027017304016
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jneumeth.2017.11.013
Archivos asociados