Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Looking for Alzheimer's Disease morphometric signatures using machine learning techniques

Donnelly Kehoe, Patricio AndresIcon ; Pascariello, Guido OrlandoIcon ; Gómez, Juan Carlos
Fecha de publicación: 05/2018
Editorial: Elsevier Science
Revista: Journal of Neuroscience Methods
ISSN: 0165-0270
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Información y Bioinformática; Neurología Clínica; Ingeniería Médica

Resumen

Background: We present our results in the International challenge for automated prediction of MCI from MRI data. We evaluate the performance of MRI-based neuromorphometrics features (nMF) in the classification of Healthy Controls (HC), Mild Cognitive Impairment (MCI), converters MCI (cMCI) and Alzheimer's Disease (AD) patients. New methods: We propose to segregate participants in three groups according to Mini Mental State Examination score (MMSEs), searching for the main nMF in each group. Then we use them to develop a Multi Classifier System (MCS). We compare the MCS against a single classifier scheme using both MMSEs+nMF and nMF only. We repeat this comparison using three state-of-the-art classification algorithms. Results: The MCS showed the best performance on both Accuracy and Area Under the Receiver Operating Curve (AUC) in comparison with single classifiers. The multiclass AUC for the MCS classification on Test Dataset were 0.83 for HC, 0.76 for cMCI, 0.65 for MCI and 0.95 for AD. Furthermore, MCS's optimum accuracy on Neurodegenerative Disease (ND) detection (AD+cMCI vs MCI+HC) was 81.0% (AUC = 0.88), while the single classifiers got 71.3% (AUC = 0.86) and 63.1% (AUC = 0.79) for MMSEs+nMF and only nMF respectively. Comparison with existing method: The proposed MCS showed a better performance than using all nMF into a single state-of-the-art classifier. Conclusions: These findings suggest that using cognitive scoring, e.g. MMSEs, in the design of a Multi Classifier System improves performance by allowing a better selection of MRI-based features.
Palabras clave: ALZHEIMER'S DISEASE , CLASSIFICATION , MACHINE LEARNING , MILD COGNITIVE IMPAIRMENT , MORPHOMETRIC ANALYSIS , NEUROSCIENCE , STRUCTURAL MRI
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 3.068Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/90568
URL: https://www.sciencedirect.com/science/article/pii/S0165027017304016
DOI: http://dx.doi.org/10.1016/j.jneumeth.2017.11.013
Colecciones
Articulos(CIFASIS)
Articulos de CENTRO INT.FRANCO ARG.D/CS D/L/INF.Y SISTEM.
Citación
Donnelly Kehoe, Patricio Andres; Pascariello, Guido Orlando; Gómez, Juan Carlos; Looking for Alzheimer's Disease morphometric signatures using machine learning techniques; Elsevier Science; Journal of Neuroscience Methods; 302; 5-2018; 24-34
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES