Mostrar el registro sencillo del ítem

dc.contributor.author
Fernández Ferreyra, Damián Roberto  
dc.date.available
2016-12-06T20:20:38Z  
dc.date.issued
2013-02  
dc.identifier.citation
Fernández Ferreyra, Damián Roberto; A quasi-Newton strategy for the sSQP method for variational inequality and optimization problems; Springer; Mathematical Programming; 137; 1; 2-2013; 199-223  
dc.identifier.issn
0025-5610  
dc.identifier.uri
http://hdl.handle.net/11336/8934  
dc.description.abstract
The quasi-Newton strategy presented in this paper preserves one of the most important features of the stabilized Sequential Quadratic Programming (sSQP) method, the local convergence without constraint qualifications assumptions. It is known that the primal-dual sequence converges quadratically assuming only the second-order sufficient condition. In this work, we show that if the matrices are updated by performing a minimization of a Bregman distance (which includes the classic updates), the quasi-Newton version of the method converges superlinearly without introducing further assumptions. Also, we show that even for an unbounded Lagrange multiplier set, the generated matrices satisfies a bounded deterioration property and the Dennis-Moré condition.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Stabilized Sequential Quadratic Programming  
dc.subject
Karush-Kuhn-Tucker System  
dc.subject
Variational Inequality  
dc.subject
Quasi-Newton Methods  
dc.subject.classification
Matemática Aplicada  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A quasi-Newton strategy for the sSQP method for variational inequality and optimization problems  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2016-11-25T14:00:16Z  
dc.journal.volume
137  
dc.journal.number
1  
dc.journal.pagination
199-223  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlín  
dc.description.fil
Fil: Fernández Ferreyra, Damián Roberto. Universidad Nacional de Cordoba. Facultad de Matematica, Astronomia y Fisica. Seccion Matematica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba; Argentina  
dc.journal.title
Mathematical Programming  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10107-011-0493-8  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10107-011-0493-8