Artículo
A quasi-Newton strategy for the sSQP method for variational inequality and optimization problems
Fecha de publicación:
02/2013
Editorial:
Springer
Revista:
Mathematical Programming
ISSN:
0025-5610
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The quasi-Newton strategy presented in this paper preserves one of the most important features of the stabilized Sequential Quadratic Programming (sSQP) method, the local convergence without constraint qualifications assumptions. It is known that the primal-dual sequence converges quadratically assuming only the second-order sufficient condition. In this work, we show that if the matrices are updated by performing a minimization of a Bregman distance (which includes the classic updates), the quasi-Newton version of the method converges superlinearly without introducing further assumptions. Also, we show that even for an unbounded Lagrange multiplier set, the generated matrices satisfies a bounded deterioration property and the Dennis-Moré condition.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - CORDOBA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - CORDOBA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - CORDOBA
Citación
Fernández Ferreyra, Damián Roberto; A quasi-Newton strategy for the sSQP method for variational inequality and optimization problems; Springer; Mathematical Programming; 137; 1; 2-2013; 199-223
Compartir
Altmétricas