Mostrar el registro sencillo del ítem
dc.contributor.author
Agnelli, Juan Pablo
dc.contributor.author
de Cezaro, Adriano
dc.contributor.author
Leitao Antonio
dc.date.available
2019-11-20T14:27:01Z
dc.date.issued
2018-10-01
dc.identifier.citation
Agnelli, Juan Pablo; de Cezaro, Adriano; Leitao Antonio; A regularization method based on level sets and augmented Lagrangian for parameter identification problems with piecewise constant solutions; IOP Publishing; Inverse Problems; 34; 12; 1-10-2018
dc.identifier.issn
0266-5611
dc.identifier.uri
http://hdl.handle.net/11336/89275
dc.description.abstract
We propose and analyse a regularization method for parameter identification problems modeled by ill-posed nonlinear operator equations, where the parameter to be identified is a piecewise constant function taking known values. Following (De Cezaro et al 2013 Inverse Problems 29 015003), a piecewise constant level set approach is used to represent the unknown parameter, and a corresponding Tikhonov functional is defined on an appropriated space of level set functions. Additionally, a suitable constraint is enforced, resulting that minimizers of our Tikhonov functional belong to the set of piecewise constant level set functions. In other words, the original parameter identification problem is rewritten in the form of a constrained optimization problem, which is solved using an augmented Lagrangian method. We prove the existence of zero duality gaps and the existence of generalized Lagrangian multipliers. Moreover, we extend the analysis in De Cezaro et al's work (2013 Inverse Problems 29 015003), proving convergence and stability of the proposed parameter identification method. A primal-dual algorithm is proposed to compute approximate solutions of the original inverse problem, and its convergence is proved. Numerical examples are presented: this algorithm is applied to a 2D diffuse optical tomography problem. The numerical results are compared with the ones in Agnelli et al (2017 ESAIM: COCV 23 663-83) demonstrating the effectiveness of this primal-dual algorithm.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
IOP Publishing
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
AUGMENTED LAGRANGIAN METHOD
dc.subject
ILL-POSED PROBLEMS
dc.subject
LEVEL-SET APPROACH
dc.subject
REGULARIZATION
dc.subject.classification
Matemática Aplicada
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
A regularization method based on level sets and augmented Lagrangian for parameter identification problems with piecewise constant solutions
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-10-10T19:03:00Z
dc.journal.volume
34
dc.journal.number
12
dc.journal.pais
Reino Unido
dc.journal.ciudad
Londres
dc.description.fil
Fil: Agnelli, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
dc.description.fil
Fil: de Cezaro, Adriano. Universidade Federal Rio Grande Do Sul; Brasil
dc.description.fil
Fil: Leitao Antonio. Universidade Federal de Santa Catarina; Brasil
dc.journal.title
Inverse Problems
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/1361-6420/aae04d
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1088/1361-6420/aae04d
Archivos asociados