Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A regularization method based on level sets and augmented Lagrangian for parameter identification problems with piecewise constant solutions

Agnelli, Juan PabloIcon ; de Cezaro, Adriano; Leitao Antonio
Fecha de publicación: 01/10/2018
Editorial: IOP Publishing
Revista: Inverse Problems
ISSN: 0266-5611
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Aplicada

Resumen

We propose and analyse a regularization method for parameter identification problems modeled by ill-posed nonlinear operator equations, where the parameter to be identified is a piecewise constant function taking known values. Following (De Cezaro et al 2013 Inverse Problems 29 015003), a piecewise constant level set approach is used to represent the unknown parameter, and a corresponding Tikhonov functional is defined on an appropriated space of level set functions. Additionally, a suitable constraint is enforced, resulting that minimizers of our Tikhonov functional belong to the set of piecewise constant level set functions. In other words, the original parameter identification problem is rewritten in the form of a constrained optimization problem, which is solved using an augmented Lagrangian method. We prove the existence of zero duality gaps and the existence of generalized Lagrangian multipliers. Moreover, we extend the analysis in De Cezaro et al's work (2013 Inverse Problems 29 015003), proving convergence and stability of the proposed parameter identification method. A primal-dual algorithm is proposed to compute approximate solutions of the original inverse problem, and its convergence is proved. Numerical examples are presented: this algorithm is applied to a 2D diffuse optical tomography problem. The numerical results are compared with the ones in Agnelli et al (2017 ESAIM: COCV 23 663-83) demonstrating the effectiveness of this primal-dual algorithm.
Palabras clave: AUGMENTED LAGRANGIAN METHOD , ILL-POSED PROBLEMS , LEVEL-SET APPROACH , REGULARIZATION
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.082Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/89275
URL: http://iopscience.iop.org/article/10.1088/1361-6420/aae04d
DOI: http://dx.doi.org/10.1088/1361-6420/aae04d
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Agnelli, Juan Pablo; de Cezaro, Adriano; Leitao Antonio; A regularization method based on level sets and augmented Lagrangian for parameter identification problems with piecewise constant solutions; IOP Publishing; Inverse Problems; 34; 12; 1-10-2018
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES