Artículo
Neural Adaptive PID Control of a Quadrotor using EFK
Rosales, Claudio Dario
; Tosetti Sanz, Santiago Ramon
; Soria, Carlos Miguel
; Rossomando, Francisco Guido
Fecha de publicación:
11/2018
Editorial:
Institute of Electrical and Electronics Engineers
Revista:
IEEE Latin America Transactions
ISSN:
1548-0992
Idioma:
Español
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper, we present a novel trajectory tracking algorithm for a four-rotor air vehicle (quadrotor). The PID controller is developed following an adaptive neuronal technique, and the discrete theory of Lyapunov verifies its stability. Also, the neuronal identification of the UAV dynamic model is presented. Besides, an extended Kalman filter is used in order to filter the signals from the aerial vehicle that are contaminated by measurement noises, and that can affect the quality of the identification. Then, the output errors are re-propagated to adjust the PID gains to reduce the control errors. Finally, the experimental results are presented using a four-rotor aerial vehicle (quadrotor), by comparing the presented proposal with a classical fixed-gain PID.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INAUT)
Articulos de INSTITUTO DE AUTOMATICA
Articulos de INSTITUTO DE AUTOMATICA
Citación
Rosales, Claudio Dario; Tosetti Sanz, Santiago Ramon; Soria, Carlos Miguel; Rossomando, Francisco Guido; Neural Adaptive PID Control of a Quadrotor using EFK; Institute of Electrical and Electronics Engineers; IEEE Latin America Transactions; 16; 11; 11-2018; 2722-2730
Compartir
Altmétricas