Mostrar el registro sencillo del ítem
dc.contributor.author
Torres Rasmussen, Marcos Fernando
dc.contributor.author
Buceta, Ruben Carlos
dc.date.available
2019-11-19T14:15:40Z
dc.date.issued
2018-03
dc.identifier.citation
Torres Rasmussen, Marcos Fernando; Buceta, Ruben Carlos; Numerical integration of KPZ equation with restrictions; IOP Publishing; Journal of Statistical Mechanics: Theory and Experiment; 2018; 3; 3-2018; 3320801-3320812
dc.identifier.issn
1742-5468
dc.identifier.uri
http://hdl.handle.net/11336/89181
dc.description.abstract
In this paper, we introduce a novel integration method of Kardar-Parisi-Zhang (KPZ) equation. It is known that if during the discrete integration of the KPZ equation the nearest-neighbor height-difference exceeds a critical value, instabilities appear and the integration diverges. One way to avoid these instabilities is to replace the KPZ nonlinear-term by a function of the same term that depends on a single adjustable parameter which is able to control pillars or grooves growing on the interface. Here, we propose a different integration method which consists of directly limiting the value taken by the KPZ nonlinearity, thereby imposing a restriction rule that is applied in each integration time-step, as if it were the growth rule of a restricted discrete model, e.g. restricted-solid-on-solid (RSOS). Taking the discrete KPZ equation with restrictions to its dimensionless version, the integration depends on three parameters: the coupling constant g, the inverse of the time-step k, and the restriction constant ϵ which is chosen to eliminate divergences while keeping all the properties of the continuous KPZ equation. We study in detail the conditions in the parameters' space that avoid divergences in the 1-dimensional integration and reproduce the scaling properties of the continuous KPZ with a particular parameter set. We apply the tested methodology to the d-dimensional case (d = 3,4) with the purpose of obtaining the growth exponent β, by establishing the conditions of the coupling constant g under which we recover known values reached by other authors, particularly for the RSOS model. This method allows us to infer that d = 4 is not the critical dimension of the KPZ universality class, where the strong-coupling phase disappears.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
IOP Publishing
dc.rights
info:eu-repo/semantics/openAccess
dc.rights
Atribución-NoComercial-CompartirIgual 2.5 Argentina (CC BY-NC-SA 2.5 AR)
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
GROWTH PROCESSES
dc.subject
INTERFACES IN RANDOM MEDIA
dc.subject
KINETIC ROUGHENING
dc.subject
CLASSICAL MONTE CARLO SIMULATIONS
dc.subject.classification
Física de los Materiales Condensados
dc.subject.classification
Ciencias Físicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Numerical integration of KPZ equation with restrictions
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-10-22T14:57:24Z
dc.journal.volume
2018
dc.journal.number
3
dc.journal.pagination
3320801-3320812
dc.journal.pais
Reino Unido
dc.journal.ciudad
London
dc.description.fil
Fil: Torres Rasmussen, Marcos Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
dc.description.fil
Fil: Buceta, Ruben Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina
dc.journal.title
Journal of Statistical Mechanics: Theory and Experiment
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://stacks.iop.org/1742-5468/2018/i=3/a=033208?key=crossref.928b8654e1f2c149a9c9881bbeab3946
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1088/1742-5468/aab1b3
Archivos asociados