Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Numerical integration of KPZ equation with restrictions

Torres Rasmussen, Marcos FernandoIcon ; Buceta, Ruben CarlosIcon
Fecha de publicación: 03/2018
Editorial: IOP Publishing
Revista: Journal of Statistical Mechanics: Theory and Experiment
ISSN: 1742-5468
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Física de los Materiales Condensados

Resumen

In this paper, we introduce a novel integration method of Kardar-Parisi-Zhang (KPZ) equation. It is known that if during the discrete integration of the KPZ equation the nearest-neighbor height-difference exceeds a critical value, instabilities appear and the integration diverges. One way to avoid these instabilities is to replace the KPZ nonlinear-term by a function of the same term that depends on a single adjustable parameter which is able to control pillars or grooves growing on the interface. Here, we propose a different integration method which consists of directly limiting the value taken by the KPZ nonlinearity, thereby imposing a restriction rule that is applied in each integration time-step, as if it were the growth rule of a restricted discrete model, e.g. restricted-solid-on-solid (RSOS). Taking the discrete KPZ equation with restrictions to its dimensionless version, the integration depends on three parameters: the coupling constant g, the inverse of the time-step k, and the restriction constant ϵ which is chosen to eliminate divergences while keeping all the properties of the continuous KPZ equation. We study in detail the conditions in the parameters' space that avoid divergences in the 1-dimensional integration and reproduce the scaling properties of the continuous KPZ with a particular parameter set. We apply the tested methodology to the d-dimensional case (d = 3,4) with the purpose of obtaining the growth exponent β, by establishing the conditions of the coupling constant g under which we recover known values reached by other authors, particularly for the RSOS model. This method allows us to infer that d = 4 is not the critical dimension of the KPZ universality class, where the strong-coupling phase disappears.
Palabras clave: GROWTH PROCESSES , INTERFACES IN RANDOM MEDIA , KINETIC ROUGHENING , CLASSICAL MONTE CARLO SIMULATIONS
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 516.8Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/89181
URL: http://stacks.iop.org/1742-5468/2018/i=3/a=033208?key=crossref.928b8654e1f2c149a
DOI: http://dx.doi.org/10.1088/1742-5468/aab1b3
Colecciones
Articulos(IFIMAR)
Articulos de INST.DE INVESTIGACIONES FISICAS DE MAR DEL PLATA
Citación
Torres Rasmussen, Marcos Fernando; Buceta, Ruben Carlos; Numerical integration of KPZ equation with restrictions; IOP Publishing; Journal of Statistical Mechanics: Theory and Experiment; 2018; 3; 3-2018; 3320801-3320812
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES