Mostrar el registro sencillo del ítem

dc.contributor.author
Bandle, Catherine  
dc.contributor.author
González, María del Mar  
dc.contributor.author
Fontelos, Marco A.  
dc.contributor.author
Wolanski, Noemi Irene  
dc.date.available
2019-11-15T15:03:07Z  
dc.date.issued
2018-04  
dc.identifier.citation
Bandle, Catherine; González, María del Mar; Fontelos, Marco A.; Wolanski, Noemi Irene; A nonlocal diffusion problem on manifolds; Taylor & Francis; Communications In Partial Differential Equations; 43; 4; 4-2018; 652-676  
dc.identifier.issn
0360-5302  
dc.identifier.uri
http://hdl.handle.net/11336/89053  
dc.description.abstract
In this paper we study a nonlocal diffusion problem on a manifold. These kinds of equations can model diffusions when there are long range effects and have been widely studied in Euclidean space. We first prove existence and uniqueness of solutions and a comparison principle. Then, for a convenient rescaling we prove that the operator under consideration converges to a multiple of the usual Heat-Beltrami operator on the manifold. Next, we look at the long time behavior on compact manifolds by studying the spectral properties of the operator. Finally, for the model case of hyperbolic space we study the long time asymptotics and find a different and interesting behavior.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Taylor & Francis  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
DIFFUSION ON MANIFOLDS  
dc.subject
HYPERBOLIC SPACE  
dc.subject
LOCALIZATION  
dc.subject
LONGTIME BEHAVIOR  
dc.subject
NONLOCAL DIFFUSION  
dc.subject
SPECTRAL PROPERTIES  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A nonlocal diffusion problem on manifolds  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-10-23T15:09:12Z  
dc.journal.volume
43  
dc.journal.number
4  
dc.journal.pagination
652-676  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Bandle, Catherine. University Of Basel; Suiza  
dc.description.fil
Fil: González, María del Mar. Universidad Autonoma de Madrid; España  
dc.description.fil
Fil: Fontelos, Marco A.. Instituto de Ciencias Matemáticas; España  
dc.description.fil
Fil: Wolanski, Noemi Irene. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.journal.title
Communications In Partial Differential Equations  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1510.09190  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.1080/03605302.2018.1459685?journalCode=lpde20  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1080/03605302.2018.1459685