Mostrar el registro sencillo del ítem
dc.contributor.author
Bandle, Catherine
dc.contributor.author
González, María del Mar
dc.contributor.author
Fontelos, Marco A.
dc.contributor.author
Wolanski, Noemi Irene
dc.date.available
2019-11-15T15:03:07Z
dc.date.issued
2018-04
dc.identifier.citation
Bandle, Catherine; González, María del Mar; Fontelos, Marco A.; Wolanski, Noemi Irene; A nonlocal diffusion problem on manifolds; Taylor & Francis; Communications In Partial Differential Equations; 43; 4; 4-2018; 652-676
dc.identifier.issn
0360-5302
dc.identifier.uri
http://hdl.handle.net/11336/89053
dc.description.abstract
In this paper we study a nonlocal diffusion problem on a manifold. These kinds of equations can model diffusions when there are long range effects and have been widely studied in Euclidean space. We first prove existence and uniqueness of solutions and a comparison principle. Then, for a convenient rescaling we prove that the operator under consideration converges to a multiple of the usual Heat-Beltrami operator on the manifold. Next, we look at the long time behavior on compact manifolds by studying the spectral properties of the operator. Finally, for the model case of hyperbolic space we study the long time asymptotics and find a different and interesting behavior.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Taylor & Francis
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
DIFFUSION ON MANIFOLDS
dc.subject
HYPERBOLIC SPACE
dc.subject
LOCALIZATION
dc.subject
LONGTIME BEHAVIOR
dc.subject
NONLOCAL DIFFUSION
dc.subject
SPECTRAL PROPERTIES
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
A nonlocal diffusion problem on manifolds
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-10-23T15:09:12Z
dc.journal.volume
43
dc.journal.number
4
dc.journal.pagination
652-676
dc.journal.pais
Reino Unido
dc.journal.ciudad
Londres
dc.description.fil
Fil: Bandle, Catherine. University Of Basel; Suiza
dc.description.fil
Fil: González, María del Mar. Universidad Autonoma de Madrid; España
dc.description.fil
Fil: Fontelos, Marco A.. Instituto de Ciencias Matemáticas; España
dc.description.fil
Fil: Wolanski, Noemi Irene. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
dc.journal.title
Communications In Partial Differential Equations
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1510.09190
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.1080/03605302.2018.1459685?journalCode=lpde20
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1080/03605302.2018.1459685
Archivos asociados