Artículo
A nonlocal diffusion problem on manifolds
Fecha de publicación:
04/2018
Editorial:
Taylor & Francis
Revista:
Communications In Partial Differential Equations
ISSN:
0360-5302
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper we study a nonlocal diffusion problem on a manifold. These kinds of equations can model diffusions when there are long range effects and have been widely studied in Euclidean space. We first prove existence and uniqueness of solutions and a comparison principle. Then, for a convenient rescaling we prove that the operator under consideration converges to a multiple of the usual Heat-Beltrami operator on the manifold. Next, we look at the long time behavior on compact manifolds by studying the spectral properties of the operator. Finally, for the model case of hyperbolic space we study the long time asymptotics and find a different and interesting behavior.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Bandle, Catherine; González, María del Mar; Fontelos, Marco A.; Wolanski, Noemi Irene; A nonlocal diffusion problem on manifolds; Taylor & Francis; Communications In Partial Differential Equations; 43; 4; 4-2018; 652-676
Compartir
Altmétricas