Artículo
Phase Transition for Infinite Systems of Spiking Neurons
Fecha de publicación:
09/2018
Editorial:
Springer
Revista:
Journal of Statistical Physics
ISSN:
0022-4715
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We prove the existence of a phase transition for a stochastic model of interacting neurons. The spiking activity of each neuron is represented by a point process having rate 1 whenever its membrane potential is larger than a threshold value. This membrane potential evolves in time and integrates the spikes of all presynaptic neurons since the last spiking time of the neuron. When a neuron spikes, its membrane potential is reset to 0 and simultaneously, a constant value is added to the membrane potentials of its postsynaptic neurons. Moreover, each neuron is exposed to a leakage effect leading to an abrupt loss of potential occurring at random times driven by an independent Poisson point process of rate γ> 0. For this process we prove the existence of a value γc such that the system has one or two extremal invariant measures according to whether γ> γc or not.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Ferrari, Pablo Augusto; Galves, Antonio; Grigorescu, I.; Löcherbach, E.; Phase Transition for Infinite Systems of Spiking Neurons; Springer; Journal of Statistical Physics; 172; 6; 9-2018; 1564-1575
Compartir
Altmétricas