Artículo
Optimal Design Problems for the First p-Fractional Eigenvalue with Mixed Boundary Conditions
Fecha de publicación:
04/2018
Editorial:
Advanced Nonlinear Studies, Inc
Revista:
Advanced Nonlinear Studies
ISSN:
1536-1365
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper, we study an optimal shape design problem for the first eigenvalue of the fractional p-Laplacian with mixed boundary conditions. The optimization variable is the set where the Dirichlet condition is imposed (that is restricted to have measure equal to a prescribed quantity α). We show existence of an optimal design and analyze the asymptotic behavior when the fractional parameter s converges to 1, and thus obtain asymptotic bounds that are independent of α.
Palabras clave:
FRACTIONAL LAPLACIAN
,
GAMMA CONVERGENCE
,
SHAPE OPTIMIZATION
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Fernandez Bonder, Julian; Rossi, Julio Daniel; Spedaletti, Juan Francisco; Optimal Design Problems for the First p-Fractional Eigenvalue with Mixed Boundary Conditions; Advanced Nonlinear Studies, Inc; Advanced Nonlinear Studies; 18; 2; 4-2018; 323-335
Compartir
Altmétricas