Mostrar el registro sencillo del ítem

dc.contributor.author
Montani, Fernando Fabian  
dc.contributor.author
Deleglise, Emilia Beatriz  
dc.contributor.author
Rosso, Osvaldo Anibal  
dc.date.available
2016-12-06T12:41:32Z  
dc.date.issued
2014-05  
dc.identifier.citation
Montani, Fernando Fabian; Deleglise, Emilia Beatriz; Rosso, Osvaldo Anibal; Efficiency characterization of a large neuronal network: A causal information approach; Elsevier Science; Physica A: Statistical Mechanics And Its Applications; 401; 5-2014; 58-70  
dc.identifier.issn
0378-4371  
dc.identifier.uri
http://hdl.handle.net/11336/8855  
dc.description.abstract
When inhibitory neurons constitute about 40% of neurons they could have an important antinociceptive role, as they would easily regulate the level of activity of other neurons. We consider a simple network of cortical spiking neurons with axonal conduction delays and spike timing dependent plasticity, representative of a cortical column or hypercolumn with a large proportion of inhibitory neurons. Each neuron fires following a Hodgkin–Huxley like dynamics and it is interconnected randomly to other neurons. The network dynamics is investigated estimating Bandt and Pompe probability distribution function associated to the interspike intervals and taking different degrees of interconnectivity across neurons. More specifically we take into account the fine temporal “structures” of the complex neuronal signals not just by using the probability distributions associated to the interspike intervals, but instead considering much more subtle measures accounting for their causal information: the Shannon permutation entropy, Fisher permutation information and permutation statistical complexity. This allows us to investigate how the information of the system might saturate to a finite value as the degree of interconnectivity across neurons grows, inferring the emergent dynamical properties of the system.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Causal Information  
dc.subject
Neural Dynamics  
dc.subject
Large Neuronal Networks  
dc.subject
Inhibitory Neurons; Antinociceptive Role  
dc.subject.classification
Otras Ciencias Físicas  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Efficiency characterization of a large neuronal network: A causal information approach  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2016-11-25T16:34:41Z  
dc.journal.volume
401  
dc.journal.pagination
58-70  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Montani, Fernando Fabian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Física de Líquidos y Sistemas Biológicos (i); Argentina. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina  
dc.description.fil
Fil: Deleglise, Emilia Beatriz. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Instituto de Física de Líquidos y Sistemas Biológicos (i); Argentina  
dc.description.fil
Fil: Rosso, Osvaldo Anibal. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Computación. Laboratorio de Sistemas Complejos; Argentina. Universidade Federal de Alagoas. Instituto de Física; Brasil  
dc.journal.title
Physica A: Statistical Mechanics And Its Applications  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0378437114000041  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.physa.2013.12.053