Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Efficiency characterization of a large neuronal network: A causal information approach

Montani, Fernando FabianIcon ; Deleglise, Emilia BeatrizIcon ; Rosso, Osvaldo AnibalIcon
Fecha de publicación: 05/2014
Editorial: Elsevier Science
Revista: Physica A: Statistical Mechanics And Its Applications
ISSN: 0378-4371
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Físicas

Resumen

When inhibitory neurons constitute about 40% of neurons they could have an important antinociceptive role, as they would easily regulate the level of activity of other neurons. We consider a simple network of cortical spiking neurons with axonal conduction delays and spike timing dependent plasticity, representative of a cortical column or hypercolumn with a large proportion of inhibitory neurons. Each neuron fires following a Hodgkin–Huxley like dynamics and it is interconnected randomly to other neurons. The network dynamics is investigated estimating Bandt and Pompe probability distribution function associated to the interspike intervals and taking different degrees of interconnectivity across neurons. More specifically we take into account the fine temporal “structures” of the complex neuronal signals not just by using the probability distributions associated to the interspike intervals, but instead considering much more subtle measures accounting for their causal information: the Shannon permutation entropy, Fisher permutation information and permutation statistical complexity. This allows us to investigate how the information of the system might saturate to a finite value as the degree of interconnectivity across neurons grows, inferring the emergent dynamical properties of the system.
Palabras clave: Causal Information , Neural Dynamics , Large Neuronal Networks , Inhibitory Neurons; Antinociceptive Role
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.060Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/8855
URL: http://www.sciencedirect.com/science/article/pii/S0378437114000041
DOI: http://dx.doi.org/10.1016/j.physa.2013.12.053
Colecciones
Articulos(IFLYSIB)
Articulos de INST.FISICA DE LIQUIDOS Y SIST.BIOLOGICOS (I)
Articulos(IIBBA)
Articulos de INST.DE INVEST.BIOQUIMICAS DE BS.AS(I)
Citación
Montani, Fernando Fabian; Deleglise, Emilia Beatriz; Rosso, Osvaldo Anibal; Efficiency characterization of a large neuronal network: A causal information approach; Elsevier Science; Physica A: Statistical Mechanics And Its Applications; 401; 5-2014; 58-70
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES