Mostrar el registro sencillo del ítem

dc.contributor.author
Andruchow, Esteban  
dc.contributor.author
Corach, Gustavo  
dc.date.available
2019-11-11T14:36:51Z  
dc.date.issued
2018-01  
dc.identifier.citation
Andruchow, Esteban; Corach, Gustavo; Essentially orthogonal subspaces; Theta Foundation; Journal Of Operator Theory; 79; 1; 1-2018; 79-100  
dc.identifier.issn
0379-4024  
dc.identifier.uri
http://hdl.handle.net/11336/88438  
dc.description.abstract
We study the set C consisting of pairs of orthogonal projectionsP,Q acting in a Hilbert space H such that PQ is a compact operator. Thesepairs have a rich geometric structure which we describe here. They are partitionedin three subclasses: C0 consists of pairs where P or Q have finite rank,C1 of pairs such that Q lies in the restricted Grassmannian (also called Sato-Grassmannian) of the polarization H = N(P)⊕ R(P), and C∞. We characterize the connected components of these classes: the components of C0 are parametrized by the rank, the components of C1 are parametrized by the Fredholm index of the pairs, and C∞ is connected. We show that these subsets are(non-complemented) differentiable submanifolds of B(H) x B(H).  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Theta Foundation  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
PROJECTIONS  
dc.subject
PAIR OF PROJECTIONS  
dc.subject
COMPACT OPERATORS  
dc.subject
GRASSMANN MANIFOLD  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Essentially orthogonal subspaces  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-10-16T17:36:29Z  
dc.journal.volume
79  
dc.journal.number
1  
dc.journal.pagination
79-100  
dc.journal.pais
Rumania  
dc.journal.ciudad
Bucharest  
dc.description.fil
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina  
dc.description.fil
Fil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina  
dc.journal.title
Journal Of Operator Theory  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.theta.ro/jot/archive/2018-079-001/index_2018-079-001.html