Artículo
Essentially orthogonal subspaces
Fecha de publicación:
01/2018
Editorial:
Theta Foundation
Revista:
Journal Of Operator Theory
ISSN:
0379-4024
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We study the set C consisting of pairs of orthogonal projectionsP,Q acting in a Hilbert space H such that PQ is a compact operator. Thesepairs have a rich geometric structure which we describe here. They are partitionedin three subclasses: C0 consists of pairs where P or Q have finite rank,C1 of pairs such that Q lies in the restricted Grassmannian (also called Sato-Grassmannian) of the polarization H = N(P)⊕ R(P), and C∞. We characterize the connected components of these classes: the components of C0 are parametrized by the rank, the components of C1 are parametrized by the Fredholm index of the pairs, and C∞ is connected. We show that these subsets are(non-complemented) differentiable submanifolds of B(H) x B(H).
Palabras clave:
PROJECTIONS
,
PAIR OF PROJECTIONS
,
COMPACT OPERATORS
,
GRASSMANN MANIFOLD
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Andruchow, Esteban; Corach, Gustavo; Essentially orthogonal subspaces; Theta Foundation; Journal Of Operator Theory; 79; 1; 1-2018; 79-100
Compartir