Mostrar el registro sencillo del ítem

dc.contributor.author
Giribet, Juan Ignacio  
dc.contributor.author
Langer, Matthias  
dc.contributor.author
Leben, Leslie  
dc.contributor.author
Maestripieri, Alejandra Laura  
dc.contributor.author
Martinez Peria, Francisco Dardo  
dc.contributor.author
Trunk, Carsten Joachim  
dc.date.available
2019-11-09T00:41:26Z  
dc.date.issued
2018-05  
dc.identifier.citation
Giribet, Juan Ignacio; Langer, Matthias; Leben, Leslie; Maestripieri, Alejandra Laura; Martinez Peria, Francisco Dardo; et al.; Spectrum of J-frame operators; AGH University of Science and Technology; Opuscula Mathematica; 38; 5; 5-2018; 623-649  
dc.identifier.issn
1232-9274  
dc.identifier.uri
http://hdl.handle.net/11336/88413  
dc.description.abstract
A J-frame is a frame F for a Krein space (H, [⋯, ⋯]) which is compatible with the indefinite inner product [⋯, ⋯] in the sense that it induces an indefinite reconstruction formula that resembles those produced by orthonormal bases in H. With every J-frame the so-called J-frame operator is associated, which is a self-adjoint operator in the Krein space H. The J-frame operator plays an essential role in the indefinite reconstruction formula. In this paper we characterize the class of J-frame operators in a Krein space by a 2 × 2 block operator representation. The J-frame bounds of F are then recovered as the suprema and infima of the numerical ranges of some uniformly positive operators which are build from the entries of the 2 × 2 block representation. Moreover, this 2 × 2 block representation is utilized to obtain enclosures for the spectrum of J-frame operators, which finally leads to the construction of a square root. This square root allows a complete description of all J-frames associated with a given J-frame operator.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
AGH University of Science and Technology  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
BLOCK OPERATOR MATRIX  
dc.subject
FRAME  
dc.subject
KREIN SPACE  
dc.subject
SPECTRUM  
dc.subject.classification
Matemática Aplicada  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Spectrum of J-frame operators  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-10-23T20:45:53Z  
dc.identifier.eissn
2300−6919  
dc.journal.volume
38  
dc.journal.number
5  
dc.journal.pagination
623-649  
dc.journal.pais
Polonia  
dc.journal.ciudad
Cracovia  
dc.description.fil
Fil: Giribet, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina  
dc.description.fil
Fil: Langer, Matthias. University of Strathclyde; Reino Unido  
dc.description.fil
Fil: Leben, Leslie. Technische Universität Ilmenau; Alemania  
dc.description.fil
Fil: Maestripieri, Alejandra Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina  
dc.description.fil
Fil: Martinez Peria, Francisco Dardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina  
dc.description.fil
Fil: Trunk, Carsten Joachim. Technische Universität Ilmenau; Alemania  
dc.journal.title
Opuscula Mathematica  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.opuscula.agh.edu.pl/om-vol38iss5art2  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.7494/OpMath.2018.38.5.623