Mostrar el registro sencillo del ítem
dc.contributor.author
Giribet, Juan Ignacio
dc.contributor.author
Langer, Matthias
dc.contributor.author
Leben, Leslie
dc.contributor.author
Maestripieri, Alejandra Laura
dc.contributor.author
Martinez Peria, Francisco Dardo
dc.contributor.author
Trunk, Carsten Joachim
dc.date.available
2019-11-09T00:41:26Z
dc.date.issued
2018-05
dc.identifier.citation
Giribet, Juan Ignacio; Langer, Matthias; Leben, Leslie; Maestripieri, Alejandra Laura; Martinez Peria, Francisco Dardo; et al.; Spectrum of J-frame operators; AGH University of Science and Technology; Opuscula Mathematica; 38; 5; 5-2018; 623-649
dc.identifier.issn
1232-9274
dc.identifier.uri
http://hdl.handle.net/11336/88413
dc.description.abstract
A J-frame is a frame F for a Krein space (H, [⋯, ⋯]) which is compatible with the indefinite inner product [⋯, ⋯] in the sense that it induces an indefinite reconstruction formula that resembles those produced by orthonormal bases in H. With every J-frame the so-called J-frame operator is associated, which is a self-adjoint operator in the Krein space H. The J-frame operator plays an essential role in the indefinite reconstruction formula. In this paper we characterize the class of J-frame operators in a Krein space by a 2 × 2 block operator representation. The J-frame bounds of F are then recovered as the suprema and infima of the numerical ranges of some uniformly positive operators which are build from the entries of the 2 × 2 block representation. Moreover, this 2 × 2 block representation is utilized to obtain enclosures for the spectrum of J-frame operators, which finally leads to the construction of a square root. This square root allows a complete description of all J-frames associated with a given J-frame operator.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
AGH University of Science and Technology
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
BLOCK OPERATOR MATRIX
dc.subject
FRAME
dc.subject
KREIN SPACE
dc.subject
SPECTRUM
dc.subject.classification
Matemática Aplicada
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Spectrum of J-frame operators
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-10-23T20:45:53Z
dc.identifier.eissn
2300−6919
dc.journal.volume
38
dc.journal.number
5
dc.journal.pagination
623-649
dc.journal.pais
Polonia
dc.journal.ciudad
Cracovia
dc.description.fil
Fil: Giribet, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
dc.description.fil
Fil: Langer, Matthias. University of Strathclyde; Reino Unido
dc.description.fil
Fil: Leben, Leslie. Technische Universität Ilmenau; Alemania
dc.description.fil
Fil: Maestripieri, Alejandra Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
dc.description.fil
Fil: Martinez Peria, Francisco Dardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
dc.description.fil
Fil: Trunk, Carsten Joachim. Technische Universität Ilmenau; Alemania
dc.journal.title
Opuscula Mathematica
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.opuscula.agh.edu.pl/om-vol38iss5art2
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.7494/OpMath.2018.38.5.623
Archivos asociados