Artículo
Spectrum of J-frame operators
Giribet, Juan Ignacio
; Langer, Matthias; Leben, Leslie; Maestripieri, Alejandra Laura
; Martinez Peria, Francisco Dardo
; Trunk, Carsten Joachim
Fecha de publicación:
05/2018
Editorial:
AGH University of Science and Technology
Revista:
Opuscula Mathematica
ISSN:
1232-9274
e-ISSN:
2300−6919
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
A J-frame is a frame F for a Krein space (H, [⋯, ⋯]) which is compatible with the indefinite inner product [⋯, ⋯] in the sense that it induces an indefinite reconstruction formula that resembles those produced by orthonormal bases in H. With every J-frame the so-called J-frame operator is associated, which is a self-adjoint operator in the Krein space H. The J-frame operator plays an essential role in the indefinite reconstruction formula. In this paper we characterize the class of J-frame operators in a Krein space by a 2 × 2 block operator representation. The J-frame bounds of F are then recovered as the suprema and infima of the numerical ranges of some uniformly positive operators which are build from the entries of the 2 × 2 block representation. Moreover, this 2 × 2 block representation is utilized to obtain enclosures for the spectrum of J-frame operators, which finally leads to the construction of a square root. This square root allows a complete description of all J-frames associated with a given J-frame operator.
Palabras clave:
BLOCK OPERATOR MATRIX
,
FRAME
,
KREIN SPACE
,
SPECTRUM
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Giribet, Juan Ignacio; Langer, Matthias; Leben, Leslie; Maestripieri, Alejandra Laura; Martinez Peria, Francisco Dardo; et al.; Spectrum of J-frame operators; AGH University of Science and Technology; Opuscula Mathematica; 38; 5; 5-2018; 623-649
Compartir
Altmétricas