Artículo
Operator Least Squares Problems and Moore–Penrose Inverses in Krein Spaces
Fecha de publicación:
06/2018
Editorial:
Birkhauser Verlag Ag
Revista:
Integral Equations and Operator Theory
ISSN:
0378-620X
e-ISSN:
1420-8989
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Given a Krein space H and B, C in L(H), L(H), the bounded linear operators on H, the minimization/maximization of expressions of the form (BX−C)#(BX−C) as X runs over L(H) is studied. Complete solutions are found for the problems posed, including solvability criteria and a characterization of the solutions when they exist. Min-max problems associated to Krein space decompositions of B are also considered, leading to a characterization of the Moore-Penrose inverse as the unique solution of a variational problem. Other generalized inverses are similarly described.
Palabras clave:
OPERATOR APPROXIMATION
,
KREIN SPACES
,
MOORE-PENROSE INVERSES
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Contino, Maximiliano; Maestripieri, Alejandra Laura; Marcantognini Palacios, Stefania Alma María; Operator Least Squares Problems and Moore–Penrose Inverses in Krein Spaces; Birkhauser Verlag Ag; Integral Equations and Operator Theory; 90; 3; 6-2018; 1-23
Compartir
Altmétricas