Mostrar el registro sencillo del ítem
dc.contributor.author
Pellegrino Vidal, Rocio
dc.contributor.author
Olivieri, Alejandro Cesar
dc.contributor.author
Tauler, Romà
dc.date.available
2019-11-08T21:07:50Z
dc.date.issued
2018-06
dc.identifier.citation
Pellegrino Vidal, Rocio; Olivieri, Alejandro Cesar; Tauler, Romà; Quantifying the Prediction Error in Analytical Multivariate Curve Resolution Studies of Multicomponent Systems; American Chemical Society; Analytical Chemistry; 90; 11; 6-2018; 7040-7047
dc.identifier.issn
0003-2700
dc.identifier.uri
http://hdl.handle.net/11336/88386
dc.description.abstract
In multivariate curve resolution (MCR) analysis, a range of feasible solutions is often encountered, because of the rotational ambiguities associated with the bilinear decomposition of data matrices. For quantitative purposes, the analysis is usually applied to a carefully designed set of calibration and test samples having uncalibrated interferents. Under the usual minimal constraints (non-negativity, unimodality, species correspondence, etc.), concentration and spectral profiles of the analyte in the test samples are not univocally recovered, unlike those in the calibration samples, especially when profile overlapping with the interferents is significant and selective regions do not exist for the analyte. In this report, a quantitative measure of the prediction errors due to rotational ambiguities is discussed, based on the calculation of the differences between the maximum and minimum area under the analyte concentration profiles calculated by the MCR-BANDS procedure. This methodology can be applied in different analytical scenarios with any number of analytes and interferents. Both absolute and relative quantitative errors due to rotation ambiguities are estimated and discussed in both simulated and experimental examples derived from liquid chromatography with diode array detection. The proposed procedure can be generalized to most of the analytical situations where every instrumentally measured sample produces a data table or data matrix.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Chemical Society
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Química Analítica
dc.subject
Quimiometría
dc.subject
Espectroscopia
dc.subject
Cromatografía
dc.subject.classification
Química Analítica
dc.subject.classification
Ciencias Químicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Quantifying the Prediction Error in Analytical Multivariate Curve Resolution Studies of Multicomponent Systems
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-10-16T19:16:45Z
dc.journal.volume
90
dc.journal.number
11
dc.journal.pagination
7040-7047
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Pellegrino Vidal, Rocio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina
dc.description.fil
Fil: Olivieri, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina
dc.description.fil
Fil: Tauler, Romà. Instituto de Diagnóstico Ambiental y Estudios del Agua; España
dc.journal.title
Analytical Chemistry
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.analchem.8b01431
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/acs.analchem.8b01431
Archivos asociados