Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Quantifying the Prediction Error in Analytical Multivariate Curve Resolution Studies of Multicomponent Systems

Pellegrino Vidal, RocioIcon ; Olivieri, Alejandro CesarIcon ; Tauler, Romà
Fecha de publicación: 06/2018
Editorial: American Chemical Society
Revista: Analytical Chemistry
ISSN: 0003-2700
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Química Analítica

Resumen

In multivariate curve resolution (MCR) analysis, a range of feasible solutions is often encountered, because of the rotational ambiguities associated with the bilinear decomposition of data matrices. For quantitative purposes, the analysis is usually applied to a carefully designed set of calibration and test samples having uncalibrated interferents. Under the usual minimal constraints (non-negativity, unimodality, species correspondence, etc.), concentration and spectral profiles of the analyte in the test samples are not univocally recovered, unlike those in the calibration samples, especially when profile overlapping with the interferents is significant and selective regions do not exist for the analyte. In this report, a quantitative measure of the prediction errors due to rotational ambiguities is discussed, based on the calculation of the differences between the maximum and minimum area under the analyte concentration profiles calculated by the MCR-BANDS procedure. This methodology can be applied in different analytical scenarios with any number of analytes and interferents. Both absolute and relative quantitative errors due to rotation ambiguities are estimated and discussed in both simulated and experimental examples derived from liquid chromatography with diode array detection. The proposed procedure can be generalized to most of the analytical situations where every instrumentally measured sample produces a data table or data matrix.
Palabras clave: Química Analítica , Quimiometría , Espectroscopia , Cromatografía
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.364Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/88386
URL: https://pubs.acs.org/doi/10.1021/acs.analchem.8b01431
DOI: http://dx.doi.org/10.1021/acs.analchem.8b01431
Colecciones
Articulos(IQUIR)
Articulos de INST.DE QUIMICA ROSARIO
Citación
Pellegrino Vidal, Rocio; Olivieri, Alejandro Cesar; Tauler, Romà; Quantifying the Prediction Error in Analytical Multivariate Curve Resolution Studies of Multicomponent Systems; American Chemical Society; Analytical Chemistry; 90; 11; 6-2018; 7040-7047
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES