Mostrar el registro sencillo del ítem
dc.contributor.author
Chelotti, Jose Omar

dc.contributor.author
Vanrell, Sebastián Rodrigo

dc.contributor.author
Galli, Julio Ricardo

dc.contributor.author
Giovanini, Leonardo Luis

dc.contributor.author
Rufiner, Hugo Leonardo

dc.date.available
2019-10-23T20:01:39Z
dc.date.issued
2018-02
dc.identifier.citation
Chelotti, Jose Omar; Vanrell, Sebastián Rodrigo; Galli, Julio Ricardo; Giovanini, Leonardo Luis; Rufiner, Hugo Leonardo; A pattern recognition approach for detecting and classifying jaw movements in grazing cattle; Elsevier; Computers and Eletronics in Agriculture; 145; 2-2018; 83-91
dc.identifier.issn
0168-1699
dc.identifier.uri
http://hdl.handle.net/11336/87162
dc.description.abstract
Precision livestock farming is a multidisciplinary science that aims to manage individual animals by continuous real-time monitoring their health and welfare. Estimation of forage intake and monitoring the feeding behavior are key activities to evaluate the health and welfare state of animals. Acoustic monitoring is a practical way of performing these tasks, however it is a difficult task because masticatory events (bite, chew and chew-bite) must be detected and classified in real-time from signals acquired in noisy environments. Acoustic-based algorithms have shown promising results, however they were limited by the effects of noises, the simplicity of classification rules, or the computational cost. In this work, a new algorithm called Chew-Bite Intelligent Algorithm (CBIA) is proposed using concepts and tools derived from pattern recognition and machine learning areas. It includes (i) a signal conditioning stage to attenuate the effects of noises and trends, (ii) a pre-processing stage to reduce the overall computational cost, (iii) an improved set of features to characterize jaw-movements, and (iv) a machine learning model to improve the discrimination capabilities of the algorithm. Three signal conditioning techniques and six machine learning models are evaluated. The overall performance is assessed on two independent data sets, using metrics like recognition rate, recall, precision and computational cost. The results demonstrate that CBIA achieves a 90% recognition rate with a marginal increment of computational cost. Compared with state-of-the-art algorithms, CBIA improves the recognition rate by 10%, even in difficult scenarios.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier

dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
ACOUSTIC MONITORING
dc.subject
DAIRY COWS
dc.subject
MACHINE LEARNING
dc.subject
PRECISION LIVESTOCK FARMING
dc.subject
SIGNAL PROCESSING
dc.subject.classification
Ciencias de la Información y Bioinformática

dc.subject.classification
Ciencias de la Computación e Información

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
A pattern recognition approach for detecting and classifying jaw movements in grazing cattle
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-10-22T17:48:05Z
dc.journal.volume
145
dc.journal.pagination
83-91
dc.journal.pais
Países Bajos

dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Chelotti, Jose Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
dc.description.fil
Fil: Vanrell, Sebastián Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
dc.description.fil
Fil: Galli, Julio Ricardo. Universidad Nacional de Rosario; Argentina
dc.description.fil
Fil: Giovanini, Leonardo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
dc.description.fil
Fil: Rufiner, Hugo Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
dc.journal.title
Computers and Eletronics in Agriculture

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.compag.2017.12.013
Archivos asociados