Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A pattern recognition approach for detecting and classifying jaw movements in grazing cattle

Chelotti, Jose OmarIcon ; Vanrell, Sebastián RodrigoIcon ; Galli, Julio Ricardo; Giovanini, Leonardo LuisIcon ; Rufiner, Hugo LeonardoIcon
Fecha de publicación: 02/2018
Editorial: Elsevier
Revista: Computers and Eletronics in Agriculture
ISSN: 0168-1699
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Información y Bioinformática

Resumen

Precision livestock farming is a multidisciplinary science that aims to manage individual animals by continuous real-time monitoring their health and welfare. Estimation of forage intake and monitoring the feeding behavior are key activities to evaluate the health and welfare state of animals. Acoustic monitoring is a practical way of performing these tasks, however it is a difficult task because masticatory events (bite, chew and chew-bite) must be detected and classified in real-time from signals acquired in noisy environments. Acoustic-based algorithms have shown promising results, however they were limited by the effects of noises, the simplicity of classification rules, or the computational cost. In this work, a new algorithm called Chew-Bite Intelligent Algorithm (CBIA) is proposed using concepts and tools derived from pattern recognition and machine learning areas. It includes (i) a signal conditioning stage to attenuate the effects of noises and trends, (ii) a pre-processing stage to reduce the overall computational cost, (iii) an improved set of features to characterize jaw-movements, and (iv) a machine learning model to improve the discrimination capabilities of the algorithm. Three signal conditioning techniques and six machine learning models are evaluated. The overall performance is assessed on two independent data sets, using metrics like recognition rate, recall, precision and computational cost. The results demonstrate that CBIA achieves a 90% recognition rate with a marginal increment of computational cost. Compared with state-of-the-art algorithms, CBIA improves the recognition rate by 10%, even in difficult scenarios.
Palabras clave: ACOUSTIC MONITORING , DAIRY COWS , MACHINE LEARNING , PRECISION LIVESTOCK FARMING , SIGNAL PROCESSING
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 736.3Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/87162
DOI: http://dx.doi.org/10.1016/j.compag.2017.12.013
Colecciones
Articulos(SINC(I))
Articulos de INST. DE INVESTIGACION EN SEÑALES, SISTEMAS E INTELIGENCIA COMPUTACIONAL
Citación
Chelotti, Jose Omar; Vanrell, Sebastián Rodrigo; Galli, Julio Ricardo; Giovanini, Leonardo Luis; Rufiner, Hugo Leonardo; A pattern recognition approach for detecting and classifying jaw movements in grazing cattle; Elsevier; Computers and Eletronics in Agriculture; 145; 2-2018; 83-91
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES